• Title/Summary/Keyword: solid elements

Search Result 646, Processing Time 0.025 seconds

Static and harmonic analysis of moderately thick square sandwich plate using FEM

  • Manoj Nawariya;Avadesh K. Sharma;Pankaj Sonia;Vijay Verma
    • Advances in materials Research
    • /
    • v.12 no.2
    • /
    • pp.83-100
    • /
    • 2023
  • In this paper, sandwich plate, constructed with orthotropic and isotropic composite materials, is analyzed to obtain the static and harmonic behavior. The analysis is done by using ANSYS APDL FEM tool. A solid-shell 190 and an 8-node solid 185 elements are employed for face and core material respectively to analyze the plate. Results was attained by using Reissner-Mindlin theory. Effect of increasing thickness ratio of face sheet to depth of the plate is presented on static, vibration and harmonic response on the sheet and the results are discussed briefly. Published work in open domain was used to validate the results and observed excellent agreement. It can be stated that proposed model presents results with remarkable accuracy. Results are obtained to reduce the weight of the plate and minimizing the vibration amplitudes.

A study on prospective elementary teachers' perception of elementary mathematics curriculum using IPA analysis (IPA 분석을 활용한 초등 수학과 교육과정에 대한 예비교사의 인식 조사 연구)

  • Kim Yunmin;Ryu Hyunah;Kim Chan-Gyun
    • East Asian mathematical journal
    • /
    • v.40 no.2
    • /
    • pp.267-286
    • /
    • 2024
  • This study investigates the perceptions toward prospective elementary teachers regarding the revised 2015 elementary mathematics curriculum. The aim is to understand the importance and implementation of the revised curriculum and provide implications for curriculum improvement in elementary teacher education institutions, using Interpretative Phenomenological Analysis (IPA). The research findings are as follows: Firstly, prospective elementary teachers perceived that the areas of the revised 2015 elementary mathematics curriculum that require particular focus are number and operations and data and probability. Secondly, they identified the specific elements within these areas that demand dedicated attention as follows: numbers up to four digits in number and operations, mixed calculations with natural numbers, shapes of solid figures, spatial sense of solid figures, comparison of quantities in measurement, etc. These findings can inform the improvement of the curriculum in elementary teacher education institutions.

Turbulent Flow over 2-D Rectangular-Shaped Roughness Elements with Various Spacings(Part 1 : Time Averaged Flow) (사각단면을 갖는 환경 거칠기 요소의 거칠기 간격에 따른 유동 변화 (제1보: 평균유동장))

  • Hyun B.S.;Suh E.J.;Kim M.R.;Choi K.C.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.2
    • /
    • pp.79-84
    • /
    • 2006
  • The present study deals with the flow over a flat plate with repeated roughness elements of 2-dimensional rectangular shape, which can be applied into the study on the natural geographical roughness and the turbulent flow on roughened solid surface. Experiment was performed using PIV technique in the circulating water channel. Results showed that the flow over roughness elements was characterized by the high shear flow emanating from top of roughness element and the recirculating region formed at the trough of two roughness elements. In general, the ratio between the spacing and the height of roughness elements plays a crucial role in developing the flow pattern near wall surface.

  • PDF

Consolidation of Quartz Powder by the Geopolymer Technique

  • Ikeda, Ko;Nakamura, Yoshinori
    • The Korean Journal of Ceramics
    • /
    • v.6 no.2
    • /
    • pp.120-123
    • /
    • 2000
  • The geopolymer technique may be a future-oriented technology for saving energies and resources. This technique requires 3 fundamental elements so-called filler, hardener and geopolymer liquor being generally an alkaline silicate solution. Quartz powder, water quenched granulated blast furnace slag and sodium silicate solution prepared from $Na_2O\cdot2SiO_2$were chosen for these three elements. After mixing these starting materials in appropriate proportions, monoliths were prepared by casting at room temperature. Strength tests showed the following results for 28d age speciment: 7.9-12.7 MPa in flexural strength and 20.2-32.8 MPa in compressive strength, depending on geopolymer liquor/solid ratio, P/S and fineness of the quartz powders used.

  • PDF

Variable Angle Beam Guided Wave Probe Design for Tubing Based on Solid Mechanics

  • Cho, Youn-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.6
    • /
    • pp.594-604
    • /
    • 2003
  • A State-of-art methodologies on implementing conventional piezoelectric and flexible PVDF elements for generating ultrasonic guided waves in a tubing are presented. Comb transducers with PVDF can be efficiently applied to selectively excite a guided wave mode by wrapping around any size pipe while a conventional immersion type piezo-elements can be also possibly used with a modification of transducer fabrication. Technical comparisons between the use of angle beam probe and comb one will be also discussed in detail. The presented technique can be easily applied to NDE for a long range inspection of tubular structures.

Shape Design Sensitivity Analysis for Stability of Elastic Structures (탄성 구조물의 안정성을 고려한 형상설계민감도해석)

  • Choi, Joo-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.1 s.244
    • /
    • pp.76-83
    • /
    • 2006
  • This paper addresses the method for the shape design sensitivity analysis of the buckling load in the continuous elastic body. The sensitivity formula for critical load is analytically derived and expressed in terms of shape variation, based on the continuum formulation of the stability problem. Though the buckling problem is more efficiently solved by the structural elements such as beam and shell, the elastic solids are considered in this paper because the solid elements can be used in general for any kind of structures whether they are thick or thin. The initial stress and buckling analysis is carried out by the commercial analysis code ANSYS. The sensitivity is computed by using the mathematical package MATLAB using the results of ANSYS. Several problems including straight and curved beams under compressive load, ring under pressure load, thin-walled section and bottle shaped column are chosen to illustrate the efficiency of the presented method.

Equivalent Beam Element for Vibration Analysis of Damped Composite Beam Structure (복합감쇠보의 진동해석을 위한 등가보요소의 개발)

  • Won, Sung-Gyu;Jeong, Weui-Bong;Bae, Soo-Ryong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.844-847
    • /
    • 2006
  • In this paper, the forced vibration of damped composite beam with I-type section was analyzed. The damping material was assumed to have complex Young's modulus. Damped composite beam structure could be modeled using equivalent beam elements with less D.O.F. rather than solid elements. Finite element method for 6 D.O.F. equivalent beam element was formulated and programmed using complex values. The results of frequency responses revealed good agreement with those of NASTRAN in both Euler beam model and Timoshenko beam model.

  • PDF

Study on the noise reduction occurred to rotation in duct (덕트 회전체에서 발생하는 소음저감에 대한 연구)

  • Park, Hong-Ul;Kim, You-Jae;Park, Sung-Kwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.875-879
    • /
    • 2006
  • Noise reduction has become a major issue of the duct air-conditioners. This paper describes the reduction of noise and vibration of rotational slim duct system. The design of slim duct system is the most important point of noise reduction in terms of the motor of 2f line noise, resonance noise between forced frequency and natural frequency of Sirocco fan, unbalance noise of motor axis and the noise induced refrigerant. The noise of duct system is mainly measured from diffuser and bottom of duct. The optimal design was implemented after measuring the effect of noise and vibration in each part which is composed of duct system. In this paper, experimental results show that the main elements in air-conditioner duct design. These elements are anti-vibration rubber of motor, axis length of motor, rubber coupler, materials of sirocco fan and control method of motor which are the most vital factors in reducing noise.

  • PDF

Optimization of Composite Laminates Subjected to High Velocity Impact Using a Genetic Algorithm

  • Nguyen, Khanh-Hung;Ahn, Jeoung-Hee;Kweon, Jin-Hwe;Choi, Jin-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.3
    • /
    • pp.227-233
    • /
    • 2010
  • In this study, a genetic algorithm was utilized to optimize the stacking sequence of a composite plate subjected to a high velocity impact. The aim is to minimize the maximum backplane displacement of the plate. In the finite element model, we idealized the impactor using solid elements and modeled the composite plate by shell elements to reduce the analysis time. Various tests were carried out to investigate the effect of parameters in the genetic algorithm such as the type of variables, population size, number of discrete variables, and mutation probability.

Computer-aided Design and Fabrication of Bio-mimetic Scaffold for Tissue Engineering Using the Triply Periodic Minimal Surface (삼중 주기적 최소곡면을 이용한 조직공학을 위한 생체모사 스캐폴드의 컴퓨터응용 설계 및 제작)

  • Yoo, Dong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.7
    • /
    • pp.834-850
    • /
    • 2011
  • In this paper, a novel tissue engineering scaffold design method based on triply periodic minimal surface (TPMS) is proposed. After generating the hexahedral elements for a 3D anatomical shape using the distance field algorithm, the unit cell libraries composed of triply periodic minimal surfaces are mapped into the subdivided hexahedral elements using the shape function widely used in the finite element method. In addition, a heterogeneous implicit solid representation method is introduced to design a 3D (Three-dimensional) bio-mimetic scaffold for tissue engineering from a sequence of computed tomography (CT) medical image data. CT image of a human spine bone is used as the case study for designing a 3D bio-mimetic scaffold model from CT image data.