DOI QR코드

DOI QR Code

Static and harmonic analysis of moderately thick square sandwich plate using FEM

  • Manoj Nawariya (Department of Mechanical Engineering, IPS College of Technology and Management) ;
  • Avadesh K. Sharma (Department of Mechanical Engineering, Rajkiya Engineering College) ;
  • Pankaj Sonia (Department of Mechanical Engineering, GLA University) ;
  • Vijay Verma (Department of Mechanical Engineering, Bundelkhand Institute of Engineering & Technology)
  • Received : 2021.01.03
  • Accepted : 2022.09.25
  • Published : 2023.06.25

Abstract

In this paper, sandwich plate, constructed with orthotropic and isotropic composite materials, is analyzed to obtain the static and harmonic behavior. The analysis is done by using ANSYS APDL FEM tool. A solid-shell 190 and an 8-node solid 185 elements are employed for face and core material respectively to analyze the plate. Results was attained by using Reissner-Mindlin theory. Effect of increasing thickness ratio of face sheet to depth of the plate is presented on static, vibration and harmonic response on the sheet and the results are discussed briefly. Published work in open domain was used to validate the results and observed excellent agreement. It can be stated that proposed model presents results with remarkable accuracy. Results are obtained to reduce the weight of the plate and minimizing the vibration amplitudes.

Keywords

References

  1. Abdennadher, M., Wali, M., Fakhfakh, T. and Haddar, M. (2009), "Dynamic analysis of sandwich structure in presence of shock", Mach. Dyn. Prob., 33(2), 5-18.
  2. Abo Sabah, S.H. and Kueh, A.B.H. (2014), "Finite element modeling of laminated composite plates with locally delaminated interface subjected to impact loading", Scientif. World J., 2014, Article ID 954070. http://doi.org/10.1155/2014/954070.
  3. Al-Fasih, M.Y., Kueh, A.B.H. and Ibrahim, M.H.W. (2020), "Failure behavior of sandwich honeycombcomposite beam containing crack at the skin", Plos One, 15(2), 1-19. https://doi.org/10.1371/journal.pone.0227895.
  4. Belarbi, M.O., Tati, A., Ounis, H. and Khechai, A. (2017), "On the free vibration analysis of laminated composite and sandwich plates: A layerwise finite element formulation", Lat. Am. J. Solid. Struct., 14, 2265-2290. https://doi.org/10.1590/1679-78253222.
  5. Caprino, G., Lopresto, V., Scarponi, C. and Briotti, G. (1999), "Infuence of material thickness on the response of carbon-fabric/epoxy panels to low velocity impact", Compos. Sci. Technol., 59, 2279-2286. https://doi.org/10.1016/S0266-3538(99)00079-2.
  6. Gopichand, A., Krishnaiah, G., Krishna, M., Reddy, V.D. and Sharma, A.V.N.L. (2012), "Design and analysis of corrugated steel sandwich structures using ANSYS workbench", Int. J. Eng. Res. Technol., 1(8), 1-8. https://doi.org/10.15623/ijret.2012.0101001
  7. Hanna, N.F. and Leissa, A.W. (1994), "A higher order shear deformation theory for the vibration of thick plates", J. Sound Vib., 170(4), 545-555. https://doi.org/10.1006/jsvi.1994.1083.
  8. Icardi, U. and Ferrero, L. (2009), "Impact analysis of sandwich composites based on a refined plate element with strain energy updating", Compos. Struct., 89, 35-51. https://doi.org/10.1016/j.compstruct.2008.06.018.
  9. Krzyzak, A., Mazur, M., Gajewski, M., Drozd, K., Komorek, A. and Przybylek, P. (2016), "Sandwich structured composites for aeronautics: methods of manufacturing affecting some mechanical properties", Int. J. Aerosp. Eng., 4, 1-10. https://doi.org/10.1155/2016/7816912.
  10. Kulkarni, S.D and Kapuria, S. (2008), "Free vibration analysis of composite and sandwich plates using an improved discrete kirchhoff quadrilateral element based on third-order zigzag theory", Comput. Mech., 42, 803-824. https://doi.org/10.1007/s00466-008-0285-z.
  11. Lashin, M.M. and El-Nady, A.O. (2015), "Free vibration analysis of sandwich beam structure using finite element approach", IOSR J. Mech. Civil Eng., 12(6), 34-42. http://doi.org/.9790/1684-12613442.
  12. Li, X., Li, G. and Wang, C.H. (2011), "Optimisation of composite sandwich structures subjected to combined torsion and bending stiffness requirements", Appl. Compos. Mater., 19, 689-704. https://doi.org/10.1007/s10443-011-9221-z.
  13. Malekzadeh, K. and Sayyidmousavi, A. (2009), "Free vibration analysis of sandwich plates with a uniformly distributed attached mass, flexible core, and different boundary conditions", J. Sandw. Struct. Mater., 12, 709-732. https://doi.org/10.1177/1099636209343383.
  14. Meunier, M. and Shenoi, R.A. (1999), "Free vibration analysis of composite sandwich plates", Proc. Inst. Mech. Eng., 213, 715-727. https://doi.org/10.1177/095440629921300707
  15. Mondal, S., Patra, A.K., Chakraborty, S. and Mitra, N. (2015), "Dynamic performance of sandwich composite plates with circular hole/cut-out: A mixed experimental-numerical study", Compos. Struct., 131, 479-489. https://doi.org/10.1016/j.compstruct.2015.05.046.
  16. Pagani, A., Valvano, S. and Carrera, E. (2018), "Analysis of laminated composites and sandwich structures by variable-kinematicMITC9plate elements", J. Sandw. Struct. Mater., 20(1), 4-41. https://doi.org/10.1177/1099636216650988.
  17. Reddy, J.N. (1997). Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press Boca Raton, New York.
  18. Rezaiee-Pajand, M., Arabi, E. and Masoodi, A.R. (2019), "Nonlinear analysis of FG-sandwich plates and shells", Aerosp. Sci. Technol., 87, 178-189. https://doi.org/10.1016/j.ast.2019.02.017.
  19. Rezaiee-Pajand, M., Masoodi, A.R. and Arabi, E. (2018), "On the shell thickness-stretching effects using seven-parameter triangular element", Eur. J. Comput. Mech., 27(2), 163-185. https://doi.org/10.1080/17797179.2018.1484208.
  20. Rezaiee-Pajand, M., Masoodi, A.R. and Mokhtari, M. (2018), "Static analysis of functionally graded nonprismatic sandwich beams", Adv. Comput. Des., 3(2), 165-190. https://doi.org/https://doi.org/10.12989/acd.2018.3.2.165.
  21. Rezaiee-Pajand, M., Masoodi, A.R. and Rajabzadeh-Safaei, N. (2019), "Nonlinear vibration analysis of carbon nanotube reinforced composite plane structures", Steel Compos. Struct., 30(6), 493-516. https://doi.org/10.12989/scs.2019.30.6.493.
  22. Rezaiee-Pajand, M., Mokhtari, M. and Masoodi, A.R. (2018), "Stability and free vibration analysis of tapered sandwich columns with functionally graded core and flexible connections", CEAS Aeronaut. J., 9(4), 629-648. https://doi.org/10.1007/s13272-018-0311-6.
  23. Shariyat, M. (2010), "A generalized global-local high-order theory for bending and vibration analyses of sandwich plates subjected to thermo-mechanical loads", Int. J. Mech. Sci., 52, 495-514. https://doi.org/10.1016/j.ijmecsci.2009.11.010.
  24. Soufeiani, L., Ghadyani, G., Kueh, A.B.H. and Nguyena, K.T.Q. (2017), "The effect of laminate stacking sequence and fiber orientation on the dynamic response of FRP composite slabs", J. Build. Eng., 13, 41-52. https://doi.org/10.1016/j.jobe.2017.07.004.
  25. Wang, C.M., Ang, K.K. and Yang, L. (2000), "Free vibration of skew sandwich plates with laminated facings", J. Sound Vib., 235(2), 317-340. https://doi.org/10.1006/jsvi.2000.2918.