• Title/Summary/Keyword: solid density

Search Result 1,198, Processing Time 0.028 seconds

Influence of Gd0.1Ce0.9O2-δ Interlayer between La0.6Sr0.4Co0.2Fe0.8O3-δ Cathode and Sc-doped Zirconia Electrolyte on the Electrochemical Performance of Solid Oxide Fuel Cells (La0.6Sr0.4Co0.2Fe0.8O3-δ 공기극과 Sc이 도핑된 지르코니아 전해질 사이에 삽입한 Gd0.1Ce0.9O2-δ 중간층이 고체산화물 연료전지의 전기화학적 성능에 미치는 영향)

  • Lim, Jinhyuk;Jung, Hwa Young;Jung, Hun-Gi;Ji, Ho-Il;Lee, Jong-Ho
    • Ceramist
    • /
    • v.21 no.4
    • /
    • pp.378-387
    • /
    • 2018
  • The optimal fabrication conditions for $Gd_{0.1}Ce_{0.9}O_{2-{\delta}}$(GDC) buffer layer and $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ (LSCF) cathode on 1mol% $CeO_2-10mol%\;Sc_2O_3$ stabilized $ZrO_2$ (CeScSZ) electrolyte were investigated for application of IT-SOFCs. GDC buffer layer was used in order to prevent undesired chemical reactions between LSCF and CeScSZ. These experiments were carried out with $5{\times}5cm^2$ anode supported unit cells to investigate the tendencies of electrochemical performance, Microstructure development and interface reaction between LSCF/GDC/CeScSZ along with the variations of GDC buffer layer thickness, sintering temperatures of GDC and LSCF were checked, respectively. Electrochemical performance was analyzed by DC current-voltage measurement and AC impedance spectroscopy. Microstructure and interface reaction were investigated by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Although the interfacial reaction between these materials could not be perfectly inhibited, We found that the cell, in which $6{\mu}m$ GDC interlayer sintered at $1200^{\circ}C$ and LSCF sintered at $1000^{\circ}C$ were applied, showed good interfacial adhesions and effective suppression of Sr, thereby resulting in fairly good performance with power density of $0.71W/cm^2$ at $800^{\circ}C$ and 0.7V.

Application of Porous Nanofibers Comprising Hollow α-Fe2O3 Nanospheres Prepared by Applying Both PS Template and Kirkendall Diffusion Effect for Anode Materials in Lithium-ion Batteries (커켄달 효과와 주형법을 통해 합성한 α-Fe2O3 중공입자로 구성된 다공성1차원 구조체의 리튬 이차전지 음극활물질 적용)

  • Lee, Young Kwang;Jeong, Sun Young;Cho, Jung Sang
    • Korean Chemical Engineering Research
    • /
    • v.56 no.6
    • /
    • pp.819-825
    • /
    • 2018
  • Porous nanofibers comprising hollow ${\alpha}-Fe_2O_3$ nanospheres were prepared by applying both template method and Kirkendall diffusion effect to electrospinning process. During heat-treatment processes, the solid Fe nano-metals formed by initial heat-treatment in the carbon matrix were converted into the hollow structured ${\alpha}-Fe_2O_3$ nanospheres. In particular, PS nanobeads added in the spinning solution were decomposed and formed numerous channels in the composite, which served as a good pathway for Kirkendall diffusion gas. The resulting porous nanofibers comprising hollow ${\alpha}-Fe_2O_3$ nanospheres were applied as an anode material for lithium-ion batteries. The discharge capacities of the nanofibers for the 30th cycle at a high current density of $1.0A\;g^{-1}$ was $776mA\;h\;g^{-1}$. The good lithium ion storage property was attributed to the synergetic effects of the hollow ${\alpha}-Fe_2O_3$ nanospheres and the interstitial nanovoids between the nanospheres. The synthetic method proposed in this study could be applied to the preparation of porous nanofibers comprising hollow nanospheres with various composition for various applications, including energy storage.

Effect of Lithium Contents and Applied Pressure on Discharge Characteristics of Single Cell with Lithium Anode for Thermal Batteries (리튬 함량 및 단위 셀 압력이 열전지용 리튬 음극의 방전 성능에 미치는 영향)

  • Im, Chae-Nam;Ahn, Tae-Young;Yu, Hye-Ryeon;Ha, Sang Hyeon;Yeo, Jae Seong;Cho, Jang-Hyeon;Yoon, Hyun-Ki
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.2
    • /
    • pp.165-173
    • /
    • 2019
  • Lithium anodes (13, 15, 17, and 20 wt% Li) were fabricated by mixing molten lithium and iron powder, which was used as a binder to hold the molten lithium, at about $500^{\circ}C$ (discharge temp.). In this study, the effect of applied pressure and lithium content on the discharge properties of a thermal battery's single cell was investigated. A single cell using a Li anode with a lithium content of less than 15 wt% presented reliable performance without any abrupt voltage drop resulting from molten lithium leakage under an applied pressure of less than $6kgf/cm^2$. Furthermore, it was confirmed that even when the solid electrolyte is thinner, the Li anode of the single cell normally discharges well without a deterioration in performance. The Li anode of the single cell presented a significantly improved open-circuit voltage of 2.06 V, compared to that of a Li-Si anode (1.93 V). The cut-off voltage and specific capacity were 1.83 V and $1,380As\;g^{-1}$ (Li anode), and 1.72 V and $1,364As\;g^{-1}$ (Li-Si anode). Additionally, the Li anode exhibited a stable and flat discharge curve until 1.83 V because of the absence of phase change phenomena of Li metal and a subsequent rapid voltage drop below 1.83 V due to the complete depletion of Li at the end state of discharge. On the other hand, the voltage of the Li-Si anode cell decreased in steps, $1.93V{\rightarrow}1.72V(Li_{13}Si_4{\rightarrow}Li_7Si_3){\rightarrow}1.65V(Li_7Si_3{\rightarrow}Li_{12}Si_7)$, according to the Li-Si phase changes during the discharge reaction. The energy density of the Li anode cell was $807.1Wh\;l^{-1}$, which was about 50% higher than that of the Li-Si cell ($522.2Wh\;l^{-1}$).

Evaluation of Structural Robustness of External Fuel Tank and Pylon for Military Aircraft under Random Vibration (랜덤진동에서 군용 항공기 외부연료탱크 및 파일런 구조 강건성 평가)

  • Kim, Hyun-Gi;Kim, Sungchan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.777-783
    • /
    • 2021
  • Aircraft are affected by various vibrations during maneuvering. These vibrations may have a fatal effect on the survival of aircraft in some cases, so the safety of components applied to the aircraft should be proven against various vibrations through random vibration analysis. In this study, the structural robustness of an external fuel tank and pylon for military aircraft was evaluated under random vibration conditions using commercial software, MSC Random. In the random vibration analysis, a frequency response analysis was performed by imposing a unit load on the boundary condition point, and then excitation was performed with a PSD profile. In this process, the required mode data was extracted through a modal analysis method. In addition, the random vibration profile specified in the US Defense Environment Standard was applied as random vibration conditions, and the PSD profile given in units of G's was converted into units of gravitational acceleration. As a result of the numerical analysis, we evaluated the structural robustness of the external fuel tank and pylon by identifying the safety margins of beam elements, shell elements, and solid elements in a numerical model for random vibration in the x, y, and z directions.

Numerical analysis of melt migration and solidification behavior in LBR severe accident with MPS method

  • Wang, Jinshun;Cai, Qinghang;Chen, Ronghua;Xiao, Xinkun;Li, Yonglin;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.162-176
    • /
    • 2022
  • In Lead-based reactor (LBR) severe accident, the meltdown and migration inside the reactor core will lead to fuel fragment concentration, which may further cause re-criticality and even core disintegration. Accurately predicting the migration and solidification behavior of melt in LBR severe accidents is of prime importance for safety analysis of LBR. In this study, the Moving Particle Semi-implicit (MPS) method is validated and used to simulate the migration and solidification behavior. Two main surface tension models are validated and compared. Meanwhile, the MPS method is validated by the L-plate solidification test. Based on the improved MPS method, the migration and solidification behavior of melt in LBR severe accident was studied furthermore. In the Pb-Bi coolant, the melt flows upward due to density difference. The migration and solidification behavior are greatly affected by the surface tension and viscous resistance varying with enthalpy. The whole movement process can be divided into three stages depending on the change in velocity. The heat transfer of core melt is determined jointly by two heat transfer modes: flow heat transfer and solid conductivity. Generally, the research results indicate that the MPS method has unique advantage in studying the migration and solidification behavior in LBR severe accident.

Microwave Dielectric Properties of (Mg1-xNix)(Ti0.95(Mg1/3Ta2/3)0.05)O3 Ceramics ((Mg1-xNix)(Ti0.95(Mg1/3Ta2/3)0.05)O3 세라믹스의 마이크로파 유전 특성)

  • Ju Hye Kim;Si Hyun Kim;Eung Soo Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.8
    • /
    • pp.330-336
    • /
    • 2023
  • The effects of Ni2+ substitution for Mg2+-sites on the microwave dielectric properties of (Mg1-xNix)(Ti0.95(Mg1/3Ta2/3)0.05)O3 (0.01 ≤ x ≤ 0.05) (MNTMT) ceramics were investigated. MNTMT ceramics were prepared by conventional solid-state reaction. When the MgO / TiO2 ratio was changed from 1.00 to 1.02, MgTi2O5 was detected as a secondary phase along with the MgTiO3 main phase in the MNTMT specimens sintered at 1,400 ℃ for 4h. For the MNTMT specimens with MgO / TiO2 = 1.07 sintered at 1,400 ℃ for 4h, a single phase of MgTiO3 with an ilmenite structure was obtained from the entire range of compositions. The relative density of all the specimens sintered at 1,400 ℃ for 4h was higher than 95 %. The quality factor (Qf) of the sintered specimens depended strongly on the degree of covalency of the specimens, and the sintered specimens with x = 0.01 showed the maximum Qf value of 489,400 GHz. The dielectric constant (K) decreased with increasing Ni2+ content because Ni2+ had a lower dielectric polarizability (1.23Å3) than Mg2+ (1.32Å3). As Ni2+ content increased, the temperature coefficient of resonant frequency (TCF) improved, from -55.56 to -21.85 ppm/℃, due to the increase in tolerance factor (t) and the lower dielectric constant (K).

Evaluating the Properties and Commercializing Potential Of Rape Stalk-based Pellets Produced with a Pilot-scaled Flat-die Pellet Mill (파일럿 규모의 평다이 성형기로 제조한 유채대 펠릿의 연료적 특성 및 상용화 가능성 평가)

  • Sei Chang Oh;In Yang
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.80-86
    • /
    • 2024
  • This study was conducted to evaluate the potential of rape stalk (RAS) as a raw material for the production of solid bio-fuels. RAS was immersed in an aqueous solution with acetic acid concentration of 1 percent, The content of reducing sugars separated from the RAS was analyzed. Glucose showed the highest content followed by xylose, galactose, arabinose and mannose. The immersed and non-immersed RAS were used for producing pellets with a pilot-scaled flat-die pellet mill. Bulk density and calorific values of the pellets improved with the use of the immersed RAS and the addition of wood particles. The values exceeded the minimum requirements for the A-grade of non-woody pellets (≧600 kg/m3 & ≧ 14.5 MJ/kg) designated by the ISO. Ash content of the pellets reduced with the immersion of RAS and the value satisfied the A-grade level (≦6.0%) of the ISO standard. The durability of the immersed RAS-based pellets was much higher than that of non-immersed IRS-based pellets, and the values were increased with the addition of wood particles. However, the durability did not meet the acceptance level for the B-grade of non-woody pellets (≧96.0%) designated by the ISO. These results suggested that the addition of binders in the production of non-woody pellets using an RAS immersed in acetic acid-based aqueous solution is required for the commercialization of the pellets.

Effects of Biochar Application on Soil Environment and Melon Growth in Greenhouse (바이오차 시용이 시설재배 멜론의 토양 환경 및 생육에 미치는 영향)

  • Kim, Eun-Hye;Yun, Geon-Sig;Chung, Guem-Jea;Lee, Kuy-Hoi;Jeon, Yu-Min;Youn, Cheol-Ku;Kim, Ju-Hyoung;Lee, Sang-Min
    • Korean Journal of Organic Agriculture
    • /
    • v.32 no.1
    • /
    • pp.75-90
    • /
    • 2024
  • Biochar is a solid substance with a high carbon content, as it is made out of biomass pyrolyzed under the condition of limited oxygen. This product has attracted attention as an environment-friendly soil amendment because it contributes to carbon neutrally and has improvement effects on the soil environment. This study conducted an experiment to evaluate soil physiochemical properties and microbial community changes in a melon greenhouse according to the applied amount of biochar to investigate the growth characteristics and yields of melons accordingly. In soil physical properties, an increase in the applied amount of biochar resulted in a decrease in bulk density and an increase in porosity of the soil, improving air permeability. In soil chemical properties, an increase in the applied amount of biochar led to a increasing of pH, organic matter and available phosphate content. In the growth characteristics of melons, there was a growing tendency of plant height, leaf length and leaf width according to the increasing application of biochar until 10,000 kg/ha. Moreover, melon yields also increased as the amount of biochar, 13~16% higher in 10,000 kg/ha biochar application than no treatment. Compared differences among microbial communities in the soil according to the application of biochar and found that plant beneficial bacteria dominated in biochar treatments. This study demonstrated the potential of biochar as an effective soil amendment in melon greenhouse by showing improvements in soil physicochemical properties and microbial communities.

Crytallization Behavior of Amorphous ${Si_{1-x}}{Ge_x)$ Films Deposited on $SiO_2$ by Molecular Beam Epitaxy(MBE) ($SiO_2$위에 MBE(Moleculat Beam Epitaxy)로 증착한 비정질 ${Si_{1-x}}{Ge_x)$박막의 결정화거동)

  • Hwang, Jang-Won;Hwang, Jang-Won;Kim, Jin-Won;Kim, Gi-Beom;Lee, Seung-Chang;Kim, Chang-Su
    • Korean Journal of Materials Research
    • /
    • v.4 no.8
    • /
    • pp.895-905
    • /
    • 1994
  • The solid phase crystallization behavior of undoped amorphous $Si_{1-x}Ge_{x}$ (X=O to 0.53) alloyfilms was studied by X-ray diffractometry(XRD) and transmission electron microscopy(TEM). Thefilms were deposited on thermally oxidized 5" (100) Si wafer by MBE(Mo1ecular Beam Epitaxy) at 300'C and annealed in the temperature range of $500^{\circ}C$ ~ $625^{\circ}C$. From XRD results, it was found that the thermal budget for full crystallization of the film is significantly reduced as the Ge concentration in thefilm is increased. In addition, the results also shows that pure amorphous Si film crystallizes with astrong (111) texture while the $Si_{1-x}Ge_{x}$ alloy film crystallzes with a (311) texture suggesting that the solidphase crystallization mechanism is changed by the incorporation of Ge. TEM analysis of the crystallized filmshow that the grain morphology of the pure Si is an elliptical and/or a dendrite shape with high density ofcrystalline defects in the grains while that of the $Si_{0.47}Ge_{0.53}$ alloy is more or less equiaxed shape with muchlower density of defects. From these results, we conclude that the crystallization mechanism changes fromtwin-assisted growth mode to random growth mode as the Ge cocentration is increased.ocentration is increased.

  • PDF

Fabrication and characteristics of modified PZT System doped With $La_2O_3$ ($La_2O_3$가 첨가된 modified PZT계의 제조 및 특성)

  • 황학인;박준식;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.3
    • /
    • pp.418-427
    • /
    • 1997
  • The effect of $La_2O_3$ as a dopant on the microstructure structure, crystal structure and electrical properties was studied. $0.05Pb(Sn_{0.5}Sb_{0.5})O_3+0.11PbTiO_3+0.84PbZroO_3+0.4Wt%MnO_2$ (=0.05PSS +0.11PT+0.84PZ+0.4wt%$MnO_2$) systems doped with 0, 0.1, 0.3, 0.5, 0.7, 1, 3, 5 mole% $La_2O_3$ were fabricated and investigated sintering density, crystal structure and micro-structure. The sintered 0.05PSS+0.11PT+0.84PZ+0.4wt%$MnO_2$ system doped with $La_2O_3$showed sintering density of the range of 7.683 g/㎤ of 0 mole% doping to 7.815 g/㎤ of 0 mole% doping. The average grain sizes in the range of 0 to 5 mole% $La_2O_3$were decreased from 9.0 $\mu\textrm{m}$ to 1.3 $\mu\textrm{m}$. X-ray diffraction investigation of sintered bodies showed that solid solutions were formed between 0.05PSS+0.11PT+0.84PZ+0.4wt%$MnO_2$ system and $La_2O_3$ in the range of 0 to 1 mole% but second phases were formed in case of 3, 5 mole%. Dielectric constants at 1 kHz were increased with 0 to 3 mlole% $La_2O_3$ before and after poling at the condition of 5 $KV_{DC}$/mm at $120^{\circ}C$ or $140^{\circ}C$ during 20 minutes. All Dielectric losses at 1 kHz were less than 1%, Curie temperatures were $208^{\circ}C$, $183^{\circ}C$, $152^{\circ}C$ and $127^{\circ}C$ at 0, 0.5, 1, 3 mole% $La_2O_3$ respectively. The values of $K_p$ were increased from 0 to 3 mole% $La_2O_3$ after poling at condition of 5 $KV_{DC}$mm at the condition of $120^{\circ}C$ or $140^{\circ}C$. The case of 0.7 mole% $La_2O_3$doped 0.05PSS+0.11PT+0.84PZ+0.4wt%$MnO_2$ system showed $K_p$ of 14.5% by poling at $140^{\circ}C$ during 20 minutes.

  • PDF