Browse > Article
http://dx.doi.org/10.9713/kcer.2018.56.6.819

Application of Porous Nanofibers Comprising Hollow α-Fe2O3 Nanospheres Prepared by Applying Both PS Template and Kirkendall Diffusion Effect for Anode Materials in Lithium-ion Batteries  

Lee, Young Kwang (Department of Engineering Chemistry, Chungbuk National University)
Jeong, Sun Young (Department of Engineering Chemistry, Chungbuk National University)
Cho, Jung Sang (Department of Engineering Chemistry, Chungbuk National University)
Publication Information
Korean Chemical Engineering Research / v.56, no.6, 2018 , pp. 819-825 More about this Journal
Abstract
Porous nanofibers comprising hollow ${\alpha}-Fe_2O_3$ nanospheres were prepared by applying both template method and Kirkendall diffusion effect to electrospinning process. During heat-treatment processes, the solid Fe nano-metals formed by initial heat-treatment in the carbon matrix were converted into the hollow structured ${\alpha}-Fe_2O_3$ nanospheres. In particular, PS nanobeads added in the spinning solution were decomposed and formed numerous channels in the composite, which served as a good pathway for Kirkendall diffusion gas. The resulting porous nanofibers comprising hollow ${\alpha}-Fe_2O_3$ nanospheres were applied as an anode material for lithium-ion batteries. The discharge capacities of the nanofibers for the 30th cycle at a high current density of $1.0A\;g^{-1}$ was $776mA\;h\;g^{-1}$. The good lithium ion storage property was attributed to the synergetic effects of the hollow ${\alpha}-Fe_2O_3$ nanospheres and the interstitial nanovoids between the nanospheres. The synthetic method proposed in this study could be applied to the preparation of porous nanofibers comprising hollow nanospheres with various composition for various applications, including energy storage.
Keywords
Hollow structure; Nanofibers; Electrospinning; Kirkendall diffusion; Anodes; Batteries;
Citations & Related Records
연도 인용수 순위
  • Reference
1 El Mel, A.-A., Nakamura, R. and Bittencourt, C., "The Kirkendall Effect and Nanoscience: Hollow Nanospheres and Nanotubes," Beilstein J. Nanotechnol., 6, 1348(2015).   DOI
2 Cho, J. S. and Kang, Y. C., "All-in-One Beaker Method for Large-Scale Production of Metal Oxide Hollow Nanospheres Using Nanoscale Kirkendall Diffusion," ACS Appl. Mater. Interfaces, 8(6), 3800-3809(2016).   DOI
3 Zhang, X., Liu, H., Petnikota, S., Ramakrishna, S. and Fan, H. J., "Electrospun $Fe_2O_3$-Carbon Composite Nanofibers as Durable Anode Materials for Lithium Ion Batteries," J. Mater. Chem. A, 2(28), 10835-10841(2014).   DOI
4 Cho, J. S., Park, J.-S., Jeon, K. M. and Kang, Y. C., "1-D Nanostructure Comprising Porous $Fe_2O_3$/Se Composite Nanorods with Numerous Nanovoids, and Their Electrochemical Properties for Use in Lithium-Ion Batteries," J. Mater. Chem. A, 5(21), 10632-10639(2017).   DOI
5 Zhang, G., Wu, H. B., Hoster, H. E. and Lou, X. W. D., "Strongly Coupled Carbon Nanofiber-Metal Oxide Coaxial Nanocables with Enhanced Lithium Storage Properties," Energy Environ. Sci., 7(1), 302-305(2014).   DOI
6 Bruce, P. G., Scrosati, B. and Tarascon, J. M., "Nanomaterials for Rechargeable Lithium Batteries," Angew. Chem. Int. Ed., 47(16), 2930-2946(2008).   DOI
7 Sun, Y., Liu, N. and Cui, Y., "Promises and Challenges of Nanomaterials for Lithium-Based Rechargeable Batteries," Nat. Energy, 1(7), 16071(2016).   DOI
8 Yu, S. H., Lee, S. H., Lee, D. J., Sung, Y. E. and Hyeon, T., "Conversion Reaction-Based Oxide Nanomaterials for Lithium Ion Battery Anodes," Small, 12(16), 2146-2172(2016).   DOI
9 Zhang, L., Zhang, G., Wu, H. B., Yu, L. and Lou, X. W. D., "Hierarchical Tubular Structures Constructed by Carbon-Coated $SnO_2$ Nanoplates for Highly Reversible Lithium Storage," Advanced Materials, 25(18), 2589-2593(2013).   DOI
10 Jayaraman, S., Aravindan, V., Suresh Kumar, P., Chui Ling, W., Ramakrishna, S. and Madhavi, S., "Exceptional Performance of $TiNb_2O_7$ Anode in All One-Dimensional Architecture by Electrospinning," ACS Appl. Mater. Interfaces, 6(11), 8660-8666(2014).   DOI
11 Wu, H. B., Zhang, G., Yu, L. and Lou, X. W. D., "One-Dimensional Metal Oxide-Carbon Hybrid Nanostructures for Electrochemical Energy Storage," Nanoscale Horizons, 1(1), 27-40(2016).   DOI
12 Park, S.-K., Lee, J., Bong, S., Jang, B., Seong, K.-D. and Piao, Y., "Scalable Synthesis of Few-Layer $MoS_2$ Incorporated into Hierarchical Porous Carbon Nanosheets for High-Performance Li-and Na-Ion Battery Anodes," ACS Appl. Mater. Interfaces, 8(30), 19456-19465(2016).   DOI
13 Dou, P., Cao, Z., Zheng, J., Wang, C. and Xu, X., "Solid Polymer Electrolyte Coating Three-Dimensional Sn/Ni Bimetallic Nanotube Arrays for High Performance Lithium-Ion Battery Anodes," J. Alloys Compd., 685, 690-698(2016).   DOI
14 Goriparti, S., Miele, E., De Angelis, F., Di Fabrizio, E., Zaccaria, R. P. and Capiglia, C., "Review on Recent Progress of Nanostructured Anode Materials for Li-Ion Batteries," J. Power Sources, 257, 421-443(2014).   DOI
15 Son, Y., Son, Y., Choi, M., Ko, M., Chae, S., Park, N. and Cho, J., "Hollow Silicon Nanostructures via the Kirkendall Effect," Nano Letters, 15(10), 6914-6918(2015).   DOI
16 Wang, Q., Chen, S., Shi, F., Chen, K., Nie, Y., Wang, Y., Wu, R., Li, J., Zhang, Y., Ding, W., Li, Y., Li, L. and Wei, Z., "Structural Evolution of Solid Pt Nanoparticles to a Hollow PtFe Alloy with a Pt-Skin Surface via Space-Confined Pyrolysis and the Nanoscale Kirkendall Effect," Advanced Materials, 28(48), 10673-10678 (2016).   DOI
17 Shapi, M. and Hesso, A., "Thermal Decomposition of Polystyrene: Volatile Compounds from Large-Scale Pyrolysis," J. Anal. Appl. Pyrolysis, 18(2), 143-161(1990).   DOI
18 Park, G. D., Cho, J. S. and Kang, Y. C., "Sodium-Ion Storage Properties of Nickel Sulfide Hollow Nanospheres/Reduced Graphene Oxide Composite Powders Prepared by a Spray Drying Process and the Nanoscale Kirkendall Effect," Nanoscale, 7(40), 16781-16788(2015).   DOI
19 Cho, J. S., Hong, Y. J. and Kang, Y. C., "Design and Synthesis of Bubble-Nanorod-Structured $Fe_2O_3$-Carbon Nanofibers as Advanced Anode Material for Li-Ion Batteries," ACS nano, 9(4), 4026-4035 (2015).   DOI
20 Li, L., Li, Z., Fu, W., Li, F., Wang, J. and Wang, W., "${\alpha}Fe_2O_3$@C Nanorings as Anode Materials for High Performance Lithium Ion Batteries," J. Alloys Compd., 647, 105-109(2015).   DOI
21 Liu, Y., Liu, Q., Gu, J., Kang, D., Zhou, F., Zhang, W., Wu, Y. and Zhang, D., "Highly Porous Graphitic Materials Prepared by Catalytic Graphitization," Carbon, 64, 132-140(2013).   DOI
22 Oya, A. and Marsh, H., "Phenomena of Catalytic Graphitization," J. Mater. Sci., 17(2), 309-322(1982).   DOI
23 Jeong, S. Y., Park, S.-K., Kang, Y. C. and Cho, J. S., "One-Dimensional Nanostructure Comprising $MoSe_2$ Nanosheets and Carbon with Uniformly Defined Nanovoids as an Anode for High-Performance Sodium-Ion Batteries," Chem. Eng. J., 351, 559-568 (2018).   DOI
24 Olmos, D., Martin, E. and Gonzalez-Benito, J., "New Molecular- Scale Information on Polystyrene Dynamics in PS and PS-$BaTiO_3$ Composites from FTIR Spectroscopy," Phys. Chem. Chem. Phys., 16(44), 24339-24349(2014).   DOI
25 Cho, J. S., Kang, Y. C., "Nanofibers Comprising Yolk-Shell Sn@Void@SnO/$SnO_2$ and Hollow SnO/$SnO_2$ and $SnO_2$ Nanospheres via the Kirkendall Diffusion Effect and Their Electrochemical Properties," Small, 11(36), 4673-4681(2015).   DOI