DOI QR코드

DOI QR Code

Effects of Biochar Application on Soil Environment and Melon Growth in Greenhouse

바이오차 시용이 시설재배 멜론의 토양 환경 및 생육에 미치는 영향

  • 김은혜 (충청북도농업기술원 수박연구소) ;
  • 윤건식 (충청북도농업기술원 수박연구소) ;
  • 정금재 (충청북도농업기술원 수박연구소) ;
  • 이규회 (충청북도농업기술원 수박연구소) ;
  • 전유민 (충청북도농업기술원 수박연구소) ;
  • 윤철구 (충청북도농업기술원 수박연구소) ;
  • 김주형 (충청북도농업기술원) ;
  • 이상민 (국립농업과학원 유기농업과)
  • Received : 2023.11.10
  • Accepted : 2023.12.19
  • Published : 2024.02.29

Abstract

Biochar is a solid substance with a high carbon content, as it is made out of biomass pyrolyzed under the condition of limited oxygen. This product has attracted attention as an environment-friendly soil amendment because it contributes to carbon neutrally and has improvement effects on the soil environment. This study conducted an experiment to evaluate soil physiochemical properties and microbial community changes in a melon greenhouse according to the applied amount of biochar to investigate the growth characteristics and yields of melons accordingly. In soil physical properties, an increase in the applied amount of biochar resulted in a decrease in bulk density and an increase in porosity of the soil, improving air permeability. In soil chemical properties, an increase in the applied amount of biochar led to a increasing of pH, organic matter and available phosphate content. In the growth characteristics of melons, there was a growing tendency of plant height, leaf length and leaf width according to the increasing application of biochar until 10,000 kg/ha. Moreover, melon yields also increased as the amount of biochar, 13~16% higher in 10,000 kg/ha biochar application than no treatment. Compared differences among microbial communities in the soil according to the application of biochar and found that plant beneficial bacteria dominated in biochar treatments. This study demonstrated the potential of biochar as an effective soil amendment in melon greenhouse by showing improvements in soil physicochemical properties and microbial communities.

바이오차란 바이오매스를 산소가 제한된 조건에서 열분해하여 만든 탄소함량이 높은 고형물로서 토양환경 개선 효과로 탄소중립을 위한 친환경 토양개량제로 주목받고 있다. 본 실험에서는 멜론 시설재배지 바이오차의 시용량별 토양 이화학성 및 미생물 군집의 변화를 평가 하였고 이에 따른 멜론의 생육 특성 및 수량성을 조사하였다. 토양의 물리성은 바이오차 시용량이 증가함에 따라 용적밀도는 감소하고 공극률이 증가하여 토양의 통기성이 개선되는 효과가 있었다. 토양의 화학성은 바이오차 시용량이 증가할수록 pH가 증가하고 유기물 및 유효인산 함량이 증가하는 경향이었다. 멜론의 생육은 무처리 대비 바이오차 10,000 kg/ha 처리까지 시용량이 증가할수록 멜론의 만장, 엽장, 엽폭이 증가하는 경향이었다. 또한 멜론의 생산량도 시용량에 따라 증가하여 바이오차 10,000 kg/ha 처리에서 무처리 대비 13~16% 높았다. 바이오차 시용에 따른 토양 미생물 군집의 차이를 비교해 본 결과, 우점 유익균의 비율이 증가하는 결과를 보였다. 본 연구는 멜론 시설재배지 바이오차의 처리가 토양의 이화학적 특성 및 미생물군집 개선의 결과를 나타내며 효과적인 토양개량제로서의 가능성을 보여주었다.

Keywords

Acknowledgement

본 연구는 농촌진흥청 공동연구사업(과제번호: PJ01573304)의 연구비 지원으로 수행됨.

References

  1. Berglund, O. and K. Berglund. 2011. Influence of water table level and soil properties on emissions of greenhouse gases from cultivated peat soil. Soil Biol and Biochem. 43(5): 923-931. https://doi.org/10.1016/j.soilbio.2011.01.002
  2. Buss, W., M. C. Graham, J. G. Shepherd, and O. Masek. 2016. Risks and benefits of marginal biomass-derived biochars for plant growth. Sci Total Environ. 496-506.
  3. Deus, J. A. L. D., I. Soares, J. C. L. Neves, J. F. D. Medeiros, and F. R. Miranda. 2015. Fertilizer Recommendation System for Melon Based on Nutritional Balance. Rev Bras Cienc Solo. 39(2): 498-511. https://doi.org/10.1590/01000683rbcs20140172
  4. Fadeev, E., M. G. Cardozo-Mino, J. Z. Rapp, C. Bienhold, I. Salter, V. Salman-Carvalho, M. Molari, H. Tegetmeyer, E. P. L. Buttigieg, and A. Boetius. 2021. Comparison of two 16S rRNA primers (V3-V4 and V4-V5) for studies of arctic microbial communities. Front Microbiol. 12: 1-11. https://doi.org/10.3389/fmicb.2021.637526
  5. Fan, S., J. Zuo, and H. Dong, 2020. Changes in soil Properties and Bacterial community composition with biochar amendment after six years. Agronomy. 10(5): 746-761. https://doi.org/10.3390/agronomy10050746
  6. Fowles, M. 2007. Black carbon sequestration as an alternative to bioenergy. Biomass & Bioenergy. 31(6): 426-432. https://doi.org/10.1016/j.biombioe.2007.01.012
  7. Gomez, J., K. Denef, C. Stewart, J. Zheng, and M. Cotrufo. 2014. Biochar addition rate influences soil microbial abundance and activity in temperate soils. Eur J Soil Sci. 65(1): 28-39. https://doi.org/10.1111/ejss.12097
  8. Hao, J., Y. N. Chai, L. D. Lopes, R. A. Ordonez, E. E. Wright, S. Archontoulis, and D. P. Schachtman, 2021. The effects of soil depth on the structure of microbial communities in agricultural soils in Iowa(United States). Appl Environ Microbiol. 87(4): 2673-2693. https://doi.org/10.1128/AEM.02673-20
  9. Huang, J., C. Zhu, Y. Kong, X. Cao, L. Zhu, Y. Zhang, Y. Ning, W. Tian, H. Zhang, Y. Yu, and J. Zhang. 2022. Biochar application alleviated rice salt stress via modifying soil properties and regulating soil bacterial abundance and community structure. Agronomy. 12(2): 409-420. https://doi.org/10.3390/agronomy12020409
  10. Jang, J. E., G. J. Lim, J. S. Park, J. M. Shim, C. S. Kang, and S. S. Hong. 2018. Application effects of biochar derived from pruned stems of pear tree on growth of crops and soil physico-chemicarl properties. J.KORRA. 24(4): 11-19.
  11. Jeffery, S., F. G. A. Verheijen, M. Velde, and A. C. Bastos. 2011. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric Ecosyst Environ. 144(1): 175-187. https://doi.org/10.1016/j.agee.2011.08.015
  12. Jeong, H. C., J. S. Lee, E. J. Choi, G. Y. Kim, S. U. Seo, H. K. Jeonand, and C. G. Kim. 2015. Post-2020 emission projection and potential reduction analysis in agricultural sector. J. Climate Change Res. 6(3): 233-241. https://doi.org/10.15531/ksccr.2015.6.3.233
  13. Joseph, S., E. R. Grabe, C. Chia, P. Munroe, S. Donne, T. Thomas, S. Nielse, C. Marjo, H. Rutlidge, G. X. Pan, L. Li, P. Taylor, A. Rawal, and J. Hook. 2014. Shifting paradigms: development of high-efficiency biochar fertilizers based on nano-structures and soluble components. Carbon Manage. 4(3): 323-343. https://doi.org/10.4155/cmt.13.23
  14. Kang, S.-W., J. S. Cho, H. T. Kim, D. C. Seo, and S. D. Moon. 2016. Effect of sesame straw biochar application on soil physics and nitrous oxide emission in upland soil. KJSSF. 49(3): 259-264.
  15. Kim, C. G., H. K. Jeong, and Y. G. Kim. 2016. Effects of organic farming on greenhouse gas emission reduction. J. Climate Change Res. 7(3): 335-339. https://doi.org/10.15531/ksccr.2016.7.3.335
  16. Kim, P. J., D. K. Lee, and D. Y. Chung. 1997. Vertical distribution of bulk density and salts in a plastic film house soil. KJSSF. 30(3): 226-233.
  17. Kim, Y., S. Y. Kim, J. H. An, M. K. Sang, H. Y. Weon, and J. Song. 2018. Changes in resident soil bacterial communities in response to inoculation of soil with beneficial bacillus spp. Microbiol & Biotechnol Lett. 46(3): 253-260. https://doi.org/10.4014/mbl.1807.07027
  18. KMA. 2023. Korea Meteorological Administration. https://kosis.kr
  19. KOSIS. 2023. Korean Statistical Information Service. https://www.kosis.kr
  20. Kwak, H. K., K. S. Seong, N. J. Lee, S. B. Lee, M. S. Han, and K. A. Rho. 2003. Changes in chemical properties and fauna of plastic film house soil by application of chemical fertilizer and composted pig manure. KJSSF. 36: 304-310.
  21. Laghari, M., M. S. Mirjat, Z. Hu, S. Fazal, B. Xiao, M. Hu, Z. Chen, and D. Guo. 2015. Effects of biochar application rate on sandy desert soil properties and sorghum growth. CATENA. 135: 313-320. https://doi.org/10.1016/j.catena.2015.08.013
  22. Lee, J. H., L. Deogratius, J. Y. Aha, S. Y. Park, B. S. Choi, T. K. Oh, and C. H. Lee. 2019. Effect of different biochar formulations on the growth of cherry tomatoes. KJOAS. 46(4): 931-939.
  23. Lee, K. S., Y. C. Choe, and S. H. Park. 2015. Measuring the environmental effects of organic farming: A meta-analysis of structural variables in empirical research. J. Environ Management. 162: 263-274. https://doi.org/10.1016/j.jenvman.2015.07.021
  24. Li, H., D. Ye. X. Wang, M. L. Settles, J. Wang, Z. Hao, L. Zhou, P. Dong, T. Jiang, and Z. Ma. 2014. Soil bacterial communities of different natural forest types in Northeast China. P lant soil. 383(1): 203-216. https://doi.org/10.1007/s11104-014-2165-y
  25. Liu, X., A. Zhang, C. Ji, S. Joseph, R. Bian, L. Li, G. Pan, and J. Paz-Ferreiro. 2013. Biochar's effect on crop productivity and the dependence on experimental conditions a meta-analysis of literature data. Plant soil. 373(1): 583-594. https://doi.org/10.1007/s11104-013-1806-x
  26. Major, J., M. Rondon, D. S. Molina, J. Riha, and J. Lehmann. 2010. Maize yield and nutrition during 4 years after biochar application to a Colombian savana oxisol. Plant Soil. 333: 117-128. https://doi.org/10.1007/s11104-010-0327-0
  27. Olmo, M., J. A. Alburquerque, V. Barron, M. C. Campillo, A. Gallardo, M. Fuentes, and R. Villar. 2014. Wheat growth and yield responses to biochar addition under Mediterranean climate conditions. Biol Fertil Soils. 50(8): 1177-1187. https://doi.org/10.1007/s00374-014-0959-y
  28. Olmo, M., R. Villar, P. Salazar, and J. A. Alburquerque. 2016. Changes in soil nutrient availability explain biochar's impact on wheat root development. Plant soil. 399(1): 333-343. https://doi.org/10.1007/s11104-015-2700-5
  29. Park, J. H., J. J. Yun, H. N. Cho, S. G. Lee, S. H. Kim, J. S. Cho, and S. W. Kang. 2021. Effect of soil amendments derived from agricultural biomass to improve corn growth and soil fertility in an upland field. KJSSF. 54(4): 478-485. https://doi.org/10.7745/KJSSF.2021.54.4.478
  30. Paustian, K., J. Lehmann, S Ogle, D. Reay, G. P. Robertson, and P. Smith. 2016. Climate-smart soils. Nature. 532(7597): 49-57. https://doi.org/10.1038/nature17174
  31. Shuxiu, F., J. Zuo, and H. Dong. 2020. Changes in Soil Properties and Bacterial Community Composition with Biochar Amendment after Six Years. Agronomy. 10(5): 746-760. https://doi.org/10.3390/agronomy10050746
  32. Sohi, S. P., E. Krull, E. Lopez-Capel, and R. Bol. 2010. A review of biochar and its use and runction in soil. Academic Press. 105: 47-82. https://doi.org/10.1016/S0065-2113(10)05002-9
  33. Sorensen, R., and M. Lamb. 2016. Crop yield response to increasing biochar rates. J. Crop Improvement. 30(6): 703-712. https://doi.org/10.1080/15427528.2016.1231728
  34. Sun, S., S. Li, B. N. Avera, B. D. Strahm, and B. D. Badgley. 2017. Soil Bacterial and Fungal Communities Show Distinct Recovery Patterns during Forest Ecosystem Restoration. Appl Environ Microbiol. 83(14): 966-983. https://doi.org/10.1128/AEM.00966-17
  35. Vazquez, M. M., S. Cesar, R. Azcon, and J. M. Barea. 2000. Interactions between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants. Appl Soil Ecol. 15(3): 261-272. https://doi.org/10.1016/S0929-1393(00)00075-5
  36. Wang, C. Y., X. Zhou, D. Guo, J. h. Zhao, L. Yan, G. Feng, Q. Gao, H. Yu, and L. Zhao. 2019. Soil pH is the primary factor driving the distribution and function of microorganisms in farmland soils in northeastern China. Ann Microbiol. 69(13): 1461-1473. https://doi.org/10.1007/s13213-019-01529-9
  37. Wang, Y. and R. Liu. 2018. Improvement of acidic soil properties by biochar from fast pyrolysis. Environ Prog Sustain Energy. 37(5): 1743-1749. https://doi.org/10.1002/ep.12825
  38. Wolna-Maruwka, A., T. Piechota, A. Niewiadomska, A. Kaminski, D. Kayzer, A. Grzyb, and A. A. Pilarska. 2021. The Effect of Biochar-Based Organic Amendments on the Structure of Soil Bacterial Community and Yield of Maize (Zea mays L.). Agronomy. 11(7): 1286-1307 https://doi.org/10.3390/agronomy11071286
  39. Wu, Y., J. Zeng, Q. Zhu, Z. Zhang, and X. Lin. 2017. pH is the primary determinant of the bacterial community structure in agricultural soils impacted by polycyclic aromatic hydrocarbon pollution. J. Scientific Reports. 7(1): 1-13. https://doi.org/10.1038/s41598-016-0028-x
  40. Yi, Y. S., H. J. Cho, J. Y. Heo, and Y. H. Lee. 2019. Effects of Wood-derived Biochar Application on Soil Chemical Properties and Growth of Lettuce (Lactuca sativa L.). KJSSF. 52(4): 457-466
  41. Zhang, C., Y. Lin, X. Tian, Q. Xu, Z. Chen, and W. Lin. 2017. Tobacco bacterial wilt suppression with biochar soil addition associates to improved soil physiochemical properties and increased rhizosphere bacteria abundance. J. App Soil Ecol. 112: 90-96. https://doi.org/10.1016/j.apsoil.2016.12.005
  42. Zhang, H., C. Chen, E. M. Gray, S. E. Boyd, H. Yang, and D. Zhang. 2016. Roles of biochar in improving phosphorus availability in soils: A phosphate adsorbent and a source of available phosphorus. Geoderma. 276: 1-6. https://doi.org/10.1016/j.geoderma.2016.04.020
  43. Zhang, H., F. Ullah, R. Ahmad, S. U. Alishah, A. Khan, and M. Adnan. 2022. Response of Soil Proteobacteria to Biochar Amendment in Sustainable Agriculture- A mini review. J. Soil Plant and Environ. 1(2): 16-30. https://doi.org/10.56946/jspae.v1i2.56