DOI QR코드

DOI QR Code

Application of Porous Nanofibers Comprising Hollow α-Fe2O3 Nanospheres Prepared by Applying Both PS Template and Kirkendall Diffusion Effect for Anode Materials in Lithium-ion Batteries

커켄달 효과와 주형법을 통해 합성한 α-Fe2O3 중공입자로 구성된 다공성1차원 구조체의 리튬 이차전지 음극활물질 적용

  • Lee, Young Kwang (Department of Engineering Chemistry, Chungbuk National University) ;
  • Jeong, Sun Young (Department of Engineering Chemistry, Chungbuk National University) ;
  • Cho, Jung Sang (Department of Engineering Chemistry, Chungbuk National University)
  • 이영광 (충북대학교 공업화학과) ;
  • 정순영 (충북대학교 공업화학과) ;
  • 조중상 (충북대학교 공업화학과)
  • Received : 2018.09.04
  • Accepted : 2018.10.30
  • Published : 2018.12.01

Abstract

Porous nanofibers comprising hollow ${\alpha}-Fe_2O_3$ nanospheres were prepared by applying both template method and Kirkendall diffusion effect to electrospinning process. During heat-treatment processes, the solid Fe nano-metals formed by initial heat-treatment in the carbon matrix were converted into the hollow structured ${\alpha}-Fe_2O_3$ nanospheres. In particular, PS nanobeads added in the spinning solution were decomposed and formed numerous channels in the composite, which served as a good pathway for Kirkendall diffusion gas. The resulting porous nanofibers comprising hollow ${\alpha}-Fe_2O_3$ nanospheres were applied as an anode material for lithium-ion batteries. The discharge capacities of the nanofibers for the 30th cycle at a high current density of $1.0A\;g^{-1}$ was $776mA\;h\;g^{-1}$. The good lithium ion storage property was attributed to the synergetic effects of the hollow ${\alpha}-Fe_2O_3$ nanospheres and the interstitial nanovoids between the nanospheres. The synthetic method proposed in this study could be applied to the preparation of porous nanofibers comprising hollow nanospheres with various composition for various applications, including energy storage.

본 연구는 ${\alpha}-Fe_2O_3$ 중공입자로 구성된 다공성 1차원 나노구조체를 전기방사 공정 및 두단계의 후 열처리 과정을 통해 주형법과 커켄달 효과를 동시 적용하여 합성했다. 열처리 과정 중, 수 nm의 치밀한 Fe 금속입자는 커켄달 효과에 의해 중공구조를 갖는 ${\alpha}-Fe_2O_3$ 입자로 최종 변환되었다. 또한, 전기방사 용액에 첨가한 PS 나노비드는 첫 열처리 과정 중 분해되어 구조체 내 수많은 기공을 형성, 환원 및 산화를 위한 가스들이 구조체 내부로 원활히 침투될 수 있는 역할을 했다. 최종 생성물인 ${\alpha}-Fe_2O_3$ 중공입자로 구성된 다공성 1차원 구조체를 리튬 이차전지의 음극활물질로 적용한 결과, $1.0A\;g^{-1}$의 높은 전류밀도에도 불구하고 30 사이클 후 $776mA\;h\;g^{-1}$의 높은 방전 용량을 나타냈다. 이와 같은 우수한 리튬 저장특성은 본 구조체를 구성하는 중공형 ${\alpha}-Fe_2O_3$ 입자와 입자들 사이의 나노기공으로부터 기인한 결과이다. 본 연구에서 제안한 중공 입자로 구성된 다공성 1차원 나노구조체 합성 방법은 다양한 전이금속 화합물 조성에 적용 가능하므로 에너지 저장 분야를 포함한 여러 분야에 응용 가능하다.

Keywords

HHGHHL_2018_v56n6_819_f0001.png 이미지

Fig. 1. SEM images and XRD pattern of the as-spun nanofibers: (a) low and (b) high-magnification FE-SEM images and (c) XRD pattern.

HHGHHL_2018_v56n6_819_f0002.png 이미지

Fig. 2. SEM images and XRD pattern of the nanofibers after initial heat-treatment at 500 ℃ for 3 h under 5% H2/Ar atmosphere: (a) low and (b) high-magnification FE-SEM images and (c) XRD pattern.

HHGHHL_2018_v56n6_819_f0003.png 이미지

Fig. 3. FT-IR spectra of the nanofibers (a) before and (b) after initial heat-treatment at 500 ℃ for 3 h under 5% H2/Ar atmosphere.

HHGHHL_2018_v56n6_819_f0004.png 이미지

Fig. 4. XRD pattern, Morphologies, SAED pattern, and elemental mapping images of the porous nanofibers comprising hollow α-Fe2O3 nanospheres: (a) XRD pattern, (b) FE-SEM image, (c) TEM image, (d,e) HR-TEM images, (f) SAED pattern, and (g) elemental mapping images.

HHGHHL_2018_v56n6_819_f0005.png 이미지

Fig. 5. FE-SEM images of the nanofibers prepared using the solution without PS nanobeads: (a, b) as-spun nanofibers, (c, d) nanofibers obtained after initial heat-treatment at 500 ℃ for 3 h under 5% H2/Ar atmosphere, and (e, f) nanofibers obtained after second heat-treatment at 500 ℃ for 3 h under air atmosphere.

HHGHHL_2018_v56n6_819_f0006.png 이미지

Fig. 7. Electrochemical performance of the porous nanofibers comprising hollow Fe2O3 nanospheres and solid structured α-Fe2O3 nanofibers: (a), (b) discharge-charge curves and (c) cycling performances at a current density of 1.0 A g-1.

HHGHHL_2018_v56n6_819_f0007.png 이미지

Fig. 6. (a) N2 adsorption and desorption isotherms and (b) BJH desorption pore-size distribution of the porous nanofibers comprising hollow α-Fe2O3 nanospheres and solid structured α-Fe2O3 nanofibers.

References

  1. Bruce, P. G., Scrosati, B. and Tarascon, J. M., "Nanomaterials for Rechargeable Lithium Batteries," Angew. Chem. Int. Ed., 47(16), 2930-2946(2008). https://doi.org/10.1002/anie.200702505
  2. Sun, Y., Liu, N. and Cui, Y., "Promises and Challenges of Nanomaterials for Lithium-Based Rechargeable Batteries," Nat. Energy, 1(7), 16071(2016). https://doi.org/10.1038/nenergy.2016.71
  3. Yu, S. H., Lee, S. H., Lee, D. J., Sung, Y. E. and Hyeon, T., "Conversion Reaction-Based Oxide Nanomaterials for Lithium Ion Battery Anodes," Small, 12(16), 2146-2172(2016). https://doi.org/10.1002/smll.201502299
  4. Jayaraman, S., Aravindan, V., Suresh Kumar, P., Chui Ling, W., Ramakrishna, S. and Madhavi, S., "Exceptional Performance of $TiNb_2O_7$ Anode in All One-Dimensional Architecture by Electrospinning," ACS Appl. Mater. Interfaces, 6(11), 8660-8666(2014). https://doi.org/10.1021/am501464d
  5. Zhang, L., Zhang, G., Wu, H. B., Yu, L. and Lou, X. W. D., "Hierarchical Tubular Structures Constructed by Carbon-Coated $SnO_2$ Nanoplates for Highly Reversible Lithium Storage," Advanced Materials, 25(18), 2589-2593(2013). https://doi.org/10.1002/adma.201300105
  6. Wu, H. B., Zhang, G., Yu, L. and Lou, X. W. D., "One-Dimensional Metal Oxide-Carbon Hybrid Nanostructures for Electrochemical Energy Storage," Nanoscale Horizons, 1(1), 27-40(2016). https://doi.org/10.1039/C5NH00023H
  7. Park, S.-K., Lee, J., Bong, S., Jang, B., Seong, K.-D. and Piao, Y., "Scalable Synthesis of Few-Layer $MoS_2$ Incorporated into Hierarchical Porous Carbon Nanosheets for High-Performance Li-and Na-Ion Battery Anodes," ACS Appl. Mater. Interfaces, 8(30), 19456-19465(2016). https://doi.org/10.1021/acsami.6b05010
  8. Dou, P., Cao, Z., Zheng, J., Wang, C. and Xu, X., "Solid Polymer Electrolyte Coating Three-Dimensional Sn/Ni Bimetallic Nanotube Arrays for High Performance Lithium-Ion Battery Anodes," J. Alloys Compd., 685, 690-698(2016). https://doi.org/10.1016/j.jallcom.2016.05.218
  9. Goriparti, S., Miele, E., De Angelis, F., Di Fabrizio, E., Zaccaria, R. P. and Capiglia, C., "Review on Recent Progress of Nanostructured Anode Materials for Li-Ion Batteries," J. Power Sources, 257, 421-443(2014). https://doi.org/10.1016/j.jpowsour.2013.11.103
  10. Son, Y., Son, Y., Choi, M., Ko, M., Chae, S., Park, N. and Cho, J., "Hollow Silicon Nanostructures via the Kirkendall Effect," Nano Letters, 15(10), 6914-6918(2015). https://doi.org/10.1021/acs.nanolett.5b02842
  11. Wang, Q., Chen, S., Shi, F., Chen, K., Nie, Y., Wang, Y., Wu, R., Li, J., Zhang, Y., Ding, W., Li, Y., Li, L. and Wei, Z., "Structural Evolution of Solid Pt Nanoparticles to a Hollow PtFe Alloy with a Pt-Skin Surface via Space-Confined Pyrolysis and the Nanoscale Kirkendall Effect," Advanced Materials, 28(48), 10673-10678 (2016). https://doi.org/10.1002/adma.201603509
  12. Park, G. D., Cho, J. S. and Kang, Y. C., "Sodium-Ion Storage Properties of Nickel Sulfide Hollow Nanospheres/Reduced Graphene Oxide Composite Powders Prepared by a Spray Drying Process and the Nanoscale Kirkendall Effect," Nanoscale, 7(40), 16781-16788(2015). https://doi.org/10.1039/C5NR04252F
  13. Cho, J. S., Hong, Y. J. and Kang, Y. C., "Design and Synthesis of Bubble-Nanorod-Structured $Fe_2O_3$-Carbon Nanofibers as Advanced Anode Material for Li-Ion Batteries," ACS nano, 9(4), 4026-4035 (2015). https://doi.org/10.1021/acsnano.5b00088
  14. Li, L., Li, Z., Fu, W., Li, F., Wang, J. and Wang, W., "${\alpha}Fe_2O_3$@C Nanorings as Anode Materials for High Performance Lithium Ion Batteries," J. Alloys Compd., 647, 105-109(2015). https://doi.org/10.1016/j.jallcom.2015.05.204
  15. Shapi, M. and Hesso, A., "Thermal Decomposition of Polystyrene: Volatile Compounds from Large-Scale Pyrolysis," J. Anal. Appl. Pyrolysis, 18(2), 143-161(1990). https://doi.org/10.1016/0165-2370(90)80004-8
  16. Liu, Y., Liu, Q., Gu, J., Kang, D., Zhou, F., Zhang, W., Wu, Y. and Zhang, D., "Highly Porous Graphitic Materials Prepared by Catalytic Graphitization," Carbon, 64, 132-140(2013). https://doi.org/10.1016/j.carbon.2013.07.044
  17. Oya, A. and Marsh, H., "Phenomena of Catalytic Graphitization," J. Mater. Sci., 17(2), 309-322(1982). https://doi.org/10.1007/BF00591464
  18. Jeong, S. Y., Park, S.-K., Kang, Y. C. and Cho, J. S., "One-Dimensional Nanostructure Comprising $MoSe_2$ Nanosheets and Carbon with Uniformly Defined Nanovoids as an Anode for High-Performance Sodium-Ion Batteries," Chem. Eng. J., 351, 559-568 (2018). https://doi.org/10.1016/j.cej.2018.06.130
  19. Olmos, D., Martin, E. and Gonzalez-Benito, J., "New Molecular- Scale Information on Polystyrene Dynamics in PS and PS-$BaTiO_3$ Composites from FTIR Spectroscopy," Phys. Chem. Chem. Phys., 16(44), 24339-24349(2014). https://doi.org/10.1039/c4cp03516j
  20. Cho, J. S., Kang, Y. C., "Nanofibers Comprising Yolk-Shell Sn@Void@SnO/$SnO_2$ and Hollow SnO/$SnO_2$ and $SnO_2$ Nanospheres via the Kirkendall Diffusion Effect and Their Electrochemical Properties," Small, 11(36), 4673-4681(2015). https://doi.org/10.1002/smll.201500940
  21. El Mel, A.-A., Nakamura, R. and Bittencourt, C., "The Kirkendall Effect and Nanoscience: Hollow Nanospheres and Nanotubes," Beilstein J. Nanotechnol., 6, 1348(2015). https://doi.org/10.3762/bjnano.6.139
  22. Cho, J. S. and Kang, Y. C., "All-in-One Beaker Method for Large-Scale Production of Metal Oxide Hollow Nanospheres Using Nanoscale Kirkendall Diffusion," ACS Appl. Mater. Interfaces, 8(6), 3800-3809(2016). https://doi.org/10.1021/acsami.5b10278
  23. Zhang, X., Liu, H., Petnikota, S., Ramakrishna, S. and Fan, H. J., "Electrospun $Fe_2O_3$-Carbon Composite Nanofibers as Durable Anode Materials for Lithium Ion Batteries," J. Mater. Chem. A, 2(28), 10835-10841(2014). https://doi.org/10.1039/c3ta15123a
  24. Cho, J. S., Park, J.-S., Jeon, K. M. and Kang, Y. C., "1-D Nanostructure Comprising Porous $Fe_2O_3$/Se Composite Nanorods with Numerous Nanovoids, and Their Electrochemical Properties for Use in Lithium-Ion Batteries," J. Mater. Chem. A, 5(21), 10632-10639(2017). https://doi.org/10.1039/C7TA02616A
  25. Zhang, G., Wu, H. B., Hoster, H. E. and Lou, X. W. D., "Strongly Coupled Carbon Nanofiber-Metal Oxide Coaxial Nanocables with Enhanced Lithium Storage Properties," Energy Environ. Sci., 7(1), 302-305(2014). https://doi.org/10.1039/c3ee43123a