• Title/Summary/Keyword: soldering process

Search Result 144, Processing Time 0.03 seconds

Study on Life Evaluation of Die Casting Mold and Selection of Mold Material (다이캐스팅 금형의 내구 수명평가와 금형강 소재 선정에 대한 연구)

  • Kim, Jinho;Hong, Seokmoo;Lee, Jong-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.3
    • /
    • pp.7-12
    • /
    • 2013
  • In Die casting process, the problem of die degradation is often issued. In oder to increase of die life the material degradation of die steel was investigated using test core pins. Three test core pins were positioned in front of the gate entry and observed washout and soldering resistance during Mg die casting process. The test parameters are set as different commercial die materials, coatings condition and hardness of die surface. Usign 220t magnesium die casting machine was employed to cast AZ91 magnesium alloys. After 150 shots, macroscopic observation of die surface was carried out. Additional 50 cycles later, test pins were chemically cleaned with 5% HCl aqueous solution to find out the existence of washout and soldering layers. Microstructural characterization of die surface and the die roughness measurement were performed together. Computational simulation using AnyCasting program was also beneficial to correlate the extent of die damage with the position of test pin inside die cavity. As results, the optimal combination of die steel with productive coating as well as its hardness was drawn out. it will be helpful to decide the material and condition considering increasing of tool life.

A Study on Lamination Property of Superconducting Coated Conductor

  • Kim, T.H.;Oh, S.S.;Ha, D.W.;Kim, H.S.;Ko, R.K.;Song, K.J.;Ha, H.S.;Yang, J.S.;Park, Y.M.;Oh, J.K.;Jung, K.D.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.161-162
    • /
    • 2005
  • 2G HTS coated conductor wire consists of textured substrate, buffer layer, superconduct layer, Ag cap layer, stabilizer. For practical application filed, coated conductor have mechanical and electrical stability and environment protection properties. This property Cu and stainless steel strip is laminated to Ag cap layer as stabilizer materials. Lamination process join stabilizer material strip and Ag cap layer with soldering method. we have laminated HTS with continuous dipping soldering process different stabilizer Cu and stainless steel strip and changed lamination process condition. The effect of lamination stabilizer and process condition has been investigated mechanical and electrical properties.

  • PDF

A Study on the Soldering Characteristic of 4 Bus Bar Crystalline Silicon Solar Cell on Infrared Lamp and Hot Plate Temperature Control (적외선 램프 및 핫 플레이트 온도 제어를 통한 4 Bus Bar 결정질 실리콘 태양전지 솔더링 특성에 관한 연구)

  • Lee, Jung Jin;Son, Hyoung Jin;Kim, Seong Hyun
    • Current Photovoltaic Research
    • /
    • v.5 no.3
    • /
    • pp.83-88
    • /
    • 2017
  • The growth of intermetallic compounds is an important factor in the reliability of solar cells. Especially, the temperature change in the soldering process greatly affects the thickness of the intermetallic compound layer. In this study, we investigated the intermetallic compound growth by Sn-diffusion in solder joints of solar cells. The thickness of the intermetallic compound layer was analyzed by IR lamp power and hot plate temperature control, and the correlation between the intermetallic compound layer and the adhesive strength was confirmed by a $90^{\circ}$ peel test. In order to investigate the growth of the intermetallic compound layer during isothermal aging, the growth of the intermetallic compound layer was analyzed at $85^{\circ}C$ and 85% for 500 h. In addition, the activation energy of Sn was calculated. The diffusion coefficient of the intermetallic compound layer was simulated and compared with experimental results to predict the long-term reliability.

Application of reflow soldering method for laminated high temperature superconductor tapes

  • Lee, Nam-Jin;Oh, Sang-Soo;Kim, Ho-Sup;Ha, Dong-Woo;Ha, Hong-Soo;Ko, Rock-Kil;Shin, Hyung-Seop;Youm, Do-Jun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.2
    • /
    • pp.9-12
    • /
    • 2010
  • A lamination system using reflow soldering was developed to enhance the mechanical properties of high temperature superconductor (HTS) tape. The laminated coated conductor tape was fabricated using the continuous lamination process. The mean, maximum, and minimum tensile loads in a T-peel test of the laminated coated conductor were 9.9 N, 12.5 N, and 7.6 N, respectively. The critical current ($I_c$) distributions of the non-laminated and laminated coated conductor were compared using anon-contact Hall probe method. The transport $I_c$ nearly matched the non-contact $I_c$; however, some degraded Ic regions were found on the length of 800 cm of laminated coated conductor. We confirmed that the cause of the partially degraded $I_c$ was due to an increase in line tension by (1) solidification induced by a change of composition that usually occurs in molten brass (Cu, Zn) in solder, or (2) non-homogeneity of the thickness of the coated conductor or metal tapes. We suggest that reflow soldering is a promising method for reinforced HTS tape if the controlling solder thickness and lamination guide are modified.

Study on the solution for the overflow of molten solder during the soldering of fuse cap through CFD analysis (전산유체해석을 통한 퓨즈캡 솔더링 시의 용융솔더 넘침 문제 해결방안 연구)

  • Jeong, Nam-Gyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.31-36
    • /
    • 2018
  • Fuses are used to protect electric circuits or devices from excess current. Glass-tube fuses are typically used, but problems have arisen due to the mandated switch from conventional solder to lead-free solder. This study used CFD to simulate the phenomenon of molten solder being poured out of a fuse during the soldering process for a fuse cap and fuse element. In addition, a method is proposed to prevent solder from overflowing, and its effectiveness was verified based on the analysis results. The results show that a sufficient increase of the temperature inside the glass tube before soldering and gravity can help to prevent the solder from overflowing.

Thermodynamic Issues of Lead-Free Soldering in Electronic Packaging (전자 패키징에 사용되는 무연 솔더에 관한 열역학적 연구)

  • 정상원;김종훈;김현득;이혁모
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.3
    • /
    • pp.37-42
    • /
    • 2003
  • In soldering of electronic packaging, the research on substituting lead-free solder materials for Pb-Sn alloys has become active due to environmental and health concerns over the use of lead. The reliability of the solder joint is very important in the development of solder materials and it is known that it is related to wettability of the solder over the substrate and microstructural evolution during soldering. It is also highly affected by type and extent of the interfacial reaction between solder and substrate and therefore, it is necessary to understand the interfacial reaction between solder and substrate completely. In order to predict the intermetallic compound (IMC) phase which forms first at the substrate/solder interface during the soldering process, a thermodynamic methodology has been suggested. The activation energy for the nucleation of each IMC phases is represented by a function of the interfacial energy and the driving force for phase formation. From this, it is predicted that the IMC phase with the smallest activation energy forms first. The grain morphology of the IMC at the solder joint is also explained by the calculations which use the energy. The Jackson parameter of the IMC grain with a rough surface is smaller than 2 but it is larger than 2 in the case of faceted grains.

  • PDF

Effects of the Atmosphere on the Comparative Solderability of Lead-Tin and Lead-Free Solders

  • Bin, Jeong-Uk;S.M.Adams;P.F.Stratton
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2001.04a
    • /
    • pp.45-47
    • /
    • 2001
  • Due to pressure from threatened legislation in Europe, consumer and governmental pressure in Japan, and glob머 market considerations in the US, there is a rapidly growing interest in lead-free solderinger, Although the move to lead free soldering seems inevitable, many problems will arise in production assembly. It is generally acknowledged that the lead-free solders available offer a much s smaller process window than lead/tin, related mainly to the higher soldering temperatures which naturally result from increases of liquidus temperatures of at least 300 C. However, raising reflow temperatures from the current 220-2300 C to 250 2600 C will lead to problems with the boards and components as well as i increasing oxidation effects. There is a need to keep reflow temperatures low without reducing solderablity. Some results on benefits of inert atmospheres are discussed in this paper. For example, testing in a nitrogen atmosphere, with 300 ppm oxygen, by the N National Physical Laboratory (NPU has revealed clear benefits for ine$\pi$mg lead-free alloys, by restoring the solderability to lead/tin levels, by enabling lower soldering temperatures. However, there has been little testing over a range of oxygen levels in nitrogen and this is an important issue in determining n nitrogen supply and oven costs. Some results are reported here from work by NPL conducted for BOC in w which solderability was evaluated for tin기ead and tin/silver/copper eutectic a alloys in a wetting balance over a range of oxygen levels form 10 ppm to 21% ( (air). The studies confirm that acceptable wetting times occur in inert atmospheres a at soldering temperatures 20 to 300 C lower than are possible in air.

  • PDF

Research of Optimum Reflow Process Condition for 0402 Electric Parts (0402칩의 무연솔더링 최적공정 연구)

  • Bang, Jung-Hwan;Lee, Se-Hyung;Shin, Yue-Seon;Kim, Jeong-Han;Lee, Chang-Woo
    • Journal of Welding and Joining
    • /
    • v.27 no.1
    • /
    • pp.85-89
    • /
    • 2009
  • Reflow process conditions were investigated for 0402 electric parts with Sn-3.0Ag-0.5Cu solders. Circle hole shape metal mask with 100 m thickness showed excellent printability. Self alignment abilities were 71% for 1005 chips, 52% for 0603 chips, and 3% for 0402 chips. Average joining strengos were 1990 gf for 1005 chips, 867 gf for 0603 chips, and 525 gf for 0402 chips. As mis-mounting angle increased, joining strength decreased. Considering self-alignment ability, mounting angle had to be under $5^{\circ}$ and contact area of the chips had to be over 40% for Pb-free soldering process for 0402 chips.

A Study on the Fluxless Bonding of Si-wafer/Solder/Glass Substrate (Si 웨이퍼/솔더/유리기판의 무플럭스 접합에 관한 연구)

  • ;;;N.N. Ekere
    • Journal of Welding and Joining
    • /
    • v.19 no.3
    • /
    • pp.305-310
    • /
    • 2001
  • UBM-coated Si-wafer was fluxlessly soldered with glass substrate in $N_2$ atmosphere using plasma cleaning method. The bulk Sn-37wt.%Pb solder was rolled to the sheet of $100\mu\textrm{m}$ thickness in order to bond a solder disk by fluxless 1st reflow process. The oxide layer on the solder surface was analysed by AES(Auger Electron Spectroscopy). Through rolling, the oxide layer on the solder surface became thin, and it was possible to bond a solder disk on the Si-wafer with fluxless process in $N_2$ gas. The Si-wafer with a solder disk was plasma-cleaned in order to remove oxide layer formed during 1st reflow and soldered to glass by 2nd reflow process without flux in $N_2$ atmosphere. The thickness of oxide layer decreased with increasing plasma power and cleaning time. The optimum plasma cleaning condition for soldering was 500W 12min. The joint was sound and the thicknesses of intermetallic compounds were less than $1\mu\textrm{m}$.

  • PDF

A Study on Electric Resistance Heated Surface Friction Spot Welding Process of Overlapped Copper Sheets (중첩된 구리 판재의 전기저항가열 표면마찰 점용접(RSFSW)에 관한 연구)

  • Sun, Xiao-Guang;Jin, In-Tai
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.2
    • /
    • pp.93-100
    • /
    • 2021
  • Copper sheets has been used widely in electric and electron industry fields because they have good electric and heat conduction property of the material. And, in order to bond copper material, a kind of soldering process is generally used. But, because it is difficult to bond by soldering between overlapped thin copper sheets, so, another kind of brazing bonding process can be used in that case. But, because the brazing process needs wide bonding area, it needs heat treatment process in electric furnace. Generally, for spot welding of sheets, a conventional electric Resistance Spot Welding process(RSW) has been used, it has welding characteristics using contact resistance heating induced by electric current flow between sheets. But, because copper sheets has the low electric resistance, it is difficult to weld by electric resistance spot welding. So, in this study, an electric Resistance heated Surface Friction Spot Welding process(RSFSW) is suggested and is testified for the spot welding ability of thin copper sheets. It is known from the experimental results and simulation that the suggested spot welding process will be able to improve the spot welding ability of copper sheets by the combined three kinds of heating generated by surface friction by rotating pin, and conducted from heated steel electrode, and generated by contact resistance of electricity.