• Title/Summary/Keyword: soldering process

Search Result 144, Processing Time 0.027 seconds

A Study on the Implementation of Wave Soldering Process and the Solder Joint Reliability Using Sn-Cu-Ni Lead-free Solder (Sn-Cu-Ni계를 이용한 Pb-free Wave Soldering의 공정 적용 및 신뢰성에 관한 연구)

  • 유충식;정종만;김진수;김미진;이종연
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.4
    • /
    • pp.47-52
    • /
    • 2001
  • Pb-free wave soldering process of AC Adapter was implemented by six sigma method using Sn-Cu-Ni type solder. The solder joint appearance, microstructural change, a lift-off phenomenon and reliability were evaluated through thermal shuck test. $(Cu,Ni)_6/Sn_5$-type intermetallic compound of which thickness is about 5 $\mu\textrm{m}$ was found at solder joint between Sn-Cu-Ni solder and copper land. After applying the thermal shock test of as-soldered product up to 750 cycles, no crack was fecund at the solder joint. The newly developed product was superior to conventional one in terms of productivity and reliability.

  • PDF

Estimate of package crack reliabilities on the various parameters using taguchi's method (다꾸찌방법을 사용한 여러변수들이 패키지균열에 미치는 신뢰도 평가)

  • Kwon, Yong-Su;Park, Sang-Sun;Park, Jae-Wan;Chai, Young-Suck;Choi, Sung-Ryul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.6
    • /
    • pp.951-960
    • /
    • 1997
  • Package crack caused by the soldering process in the surface mounting plastic package is evaluated by applying the maximum energy release rate criterion. It could be shown that the crack propagation from the lower edge of the ie pad is easily occurred at the maximum temperature during the soldering process, where the pressure acting on the crack surface is assumed by the saturated vapor pressure at maximum temperature. The package crack formation depends on various parameters such as chip size, relative thickness, material properties, the moisture content and soldering temperature etc. The quantitative measure of the effects of the parameters could be easily obtained by using the taguchi's method which requires only a few kinds of combinations with such parameters. From the results, it could be obtained that the more significant parameters to effect the package reliability are the orders of Young's modulus, die pad size, down set, chip thickness and maximum soldering temperature.

Heat Transfer Analysis of Infrared Reflow Soldering Process for Attaching Electronic Components to Printed Circuit Boards (전자부품의 인쇄회로기판 부착시 적외선 Reflow Soldering과정 열전달 해석)

  • Son, Young-Seok
    • Journal of Welding and Joining
    • /
    • v.15 no.6
    • /
    • pp.105-115
    • /
    • 1997
  • A numerical study is performed to predict the thermal response of a detailed card assembly during infrared reflow soldering. The card assembly is exposed to discontinuous infrared panel heater temperature distributions and high radiative/convective heating and cooling rates at the inlet and exit of the oven. The convective, radiative and conduction heat transfer within the reflow oven as well as within the card assembly are simulated and the predictions illustrate the detailed thermal responses. The predictions show that mixed convection plays an important role with relatively high frequency effects attributed to buoyancy forces, however the thermal response of the card assembly is dominated by radiation. The predictions of the detailed card assembly thermal response can be used to select the oven operating conditions to ensure proper solder melting and minimization of thermally induced card assembly tresses and warpage.

  • PDF

A study on the implementation of wave soldering process and the solder joint reliability of it using Sn-Cu-Ni lead-free solder (Sn-Cu-Ni계를 이용한 Pb-free wave Soldering의 공정 적용 및 신뢰성에 관한 연구)

  • 유충식;정종만;김진수;김미진
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2001.11a
    • /
    • pp.89-98
    • /
    • 2001
  • Pb-free wave soldering process of AC Adapter was implemented by six sigma method using Sn-Cu-Ni type solder. The solder joint appearance, microstructural change, a lift-off phenomenon and reliability were evaluated through thermal shock teal. $(Cu,Ni)_6Sn_5$-type intermetallic compound of which thickness is about 5 micron was found at solder joint between Sn-Cu-Ni solder and copper land. After applying the thermal shock test of as-soldered product up to 750 cycles, no crack was found at the solder joint and the newly developed product was superior to conventions; one in terms of productivity and reliability.

  • PDF

Study on Joining Strength Improvement of Solder Joint with Pb Free Solder (Pb Free 솔더를 사용한 솔더 접합부의 접합 강도 향상에 관한 연구)

  • 신영의;김영탁
    • Journal of Welding and Joining
    • /
    • v.15 no.2
    • /
    • pp.36-42
    • /
    • 1997
  • In this paper, stability of initial strength at solder joint with lead free solders, such as Sn-In (52-48%) and Sn-Ag (96.5-3.5wt%) was studied. To obtain at solder joint with high quality, it is very important to control the temperature at the interface of solder joints. It is found that the thermal EMF (electro motive force) occurs betwee lead frame and copper pad on a substrate during reflow soldering process using heated tip. As a result of control the temperature at interface of solder joints, variation of initial strength at solder joint decreases from about $\pm40%$ to $\pm20%$, and it is realized Pb free soldering process using Sn/In and Sn-Ag solder paste.

  • PDF

Development on New Laser Tabbing Process for Modulation of Thin Solar Cell (박형 태양 전지 모듈화를 위한 레이져 태빙 자동화 공정(장비) 개발)

  • No, Donghun;Choi, Chul-June;Cho, Hyun Young;Yu, Jae Min;Kim, JungKeun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.58.1-58.1
    • /
    • 2010
  • In solar cell module manufacturing, single solar cells has to be joined electrically to strings. Copper stripes coated with tin-silver-copper alloy are joined on screen printed silver of solar cells which is called busbar. The bus bar collects the electrons generated in solar cell and it is connected to the next cell in the conventional module manufacturing by a metal stringer using conventional hot air or infrared lamp soldering systems. For thin solar cells, both soldering methods have disadvantages, which heats up the whole cell to high temperatures. Because of the different thermal expansion coefficient, mechanical stresses are induced in the solar cell. Recently, the trend of solar cell is toward thinner thickness below 180um and thus the risk of breakage of solar cells is increasing. This has led to the demand for new joining processes with high productivity and reduced error rates. In our project, we have developed a new method to solder solar cells with a laser heating source. The soldering process using diode laser with wavelength of 980nm was examined. The diode laser used has a maximum power of 60W and a scanner system is used to solder dimension of 6" solar cell and the beam travel speed is optimized. For clamping copper stripe to solar cell, zirconia(ZrO)coated iron pin-spring system is used to clamp both joining parts during a scanner system is traveled. The hot plate temperature that solar cell is positioned during lasersoldering process is optimized. Also, conventional solder joints after $180^{\circ}C$ peel tests are compared to the laser soldering methods. Microstructures in welded zone shows that the diffusion zone between solar cell and metal stripes is better formed than inIR soldering method. It is analyzed that the laser solder joints show no damages to the silicon wafer and no cracks beneath the contact. Peel strength between 4N and 5N are measured, with much shorter joining time than IR solder joints and it is shown that the use of laser soldering reduced the degree of bending of solar cell much less than IR soldering.

  • PDF

WETTING PROPERTIES AND INTERFACIAL REACTIONS OF INDIUM SOLDER

  • Kim, Dae-Gon;Lee, Chang-Youl;Hong, Tae-Whan;Jung, Seung-Boo
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.475-480
    • /
    • 2002
  • The reliability of the solder joint is affected by type and extent of the interfacial reaction between solder and substrates. Therefore, understanding of intermetallic compounds produced by soldering in electronic packaging is essential. In-based alloys have been favored bonding devices that demand low soldering temperatures. For photonic and fiber optics packaging, m-based solders have become increasingly attractive as a soldering material candidate due to its ductility. In the present work, the interfacial reactions between indium solder and bare Cu Substrate are investigated. For the identification of intermetallic compounds, both Scanning Electron Microscopy(SEM) and X-Ray Diffraction(XRD) were employed. Experimental results showed that the intermetallic compounds, such as Cu$_{11}$In$_{9}$ was observed for bare Cu substrate. Additionally, the growth rate of these intermetallic compounds was increased with the reaction temperature and time. We found that the growth of the intermetallic compound follows the parabolic law, which indicates that the growth is diffusion-controlled.d.

  • PDF

The Third National Congress on Fluids Engineering: Thermal design for the vertical type oven of soldering process. (반도체 공정용 수직로 설계를 위한 열유동 제어.)

  • Jeong, Won-Jung;Kwon, Hyun-Goo;Cho, Hyung-Hee
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.561-564
    • /
    • 2006
  • Because of new requirements related to the employment of SMT(Surface Mounting Technology) manufacturing and the diversity of components on high density PCB(printed circuit boards), Thermal control of the reflow process is required in oder to achieve acceptable yields and reliability of SMT assemblies. Accurate control of the temperature distribution during the reflow process is one of the major requirements, especially in lead-free assembly. This study has been performed for reflow process using the commercial CFD tool(Fluent) for predicting flow and temperature distributions. There was flow recirculation region that had a weak point in the temperature uniformity. Porous plate was installed to prevent and minimize flow recirculation region for acquiring uniform temperature in oven. This paper provided design concept from CFD results of the steady state temperature distribution and flow field inside a reflow oven.

  • PDF

Study on soldering process of SmBCO coated conductor for lamination (SmBCO 박막형 초전도 테이프의 lamination 공정을 위한 soldering 연구)

  • Ha, Dong-Woo;Kim, Tae-Hyung;Oh, Jae-Gn;Kim, Ho-Sup;Ha, Hong-Soo;Goh, Rak-Kil;Song, Gyung-Jung;Lee, Nam-Jin;Yang, Joo-Saeng;Oh, Sang-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.236-237
    • /
    • 2007
  • Lamination of coated conductor is important to commercialize for electrical stabilizer and mechanical support. It should be known the properties of soldering interface and the variation of superconductivity on coated conductor with various kinds of solders. $SmBa_2Cu_O_x$ thin films were deposited by co-evaporation method (EDDC, Evaporation using Drum in Dual Chambers). 4 kinds of solders were used to investigate interface properties of SmBCO conductors. In-Bi solder could maintain good connection.

  • PDF

A study of the electrical characteristics changes of PV cell at high temperature (태양전지 셀의 고온에 의한 전기적 특성 변화 연구)

  • Jung, Tae-Hee;Shin, Jun-Oh;Kim, Tae-Bum;Kang, Gi-Hwan;Ahn, Hyung-Keun;Han, Deuk-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.387-389
    • /
    • 2009
  • PV module is manufactured by several steps such as cell sort, tabbing & string, lay-up, lamination processes. In oder to manufacture PV module, solar cell must be placed in high temperature. Soldering Process in high temperature is important because it directly influences electric output performance changes of solar cell in solar cell module. We consider applying momentary high temperature, while soldering solar cell, and expect change electric characteristics of PV module. In this paper, we measure electric output characteristics of solar cells after those are applied with high temperature changes for two seconds. From these results, we confirm with application of high temperature, $I_{sc}$ increase and $V_{oc}$ slightly decreases.

  • PDF