• Title/Summary/Keyword: solar term

Search Result 411, Processing Time 0.025 seconds

Development of a Prediction Model of Solar Irradiances Using LSTM for Use in Building Predictive Control (건물 예측 제어용 LSTM 기반 일사 예측 모델)

  • Jeon, Byung-Ki;Lee, Kyung-Ho;Kim, Eui-Jong
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.5
    • /
    • pp.41-52
    • /
    • 2019
  • The purpose of the work is to develop a simple solar irradiance prediction model using a deep learning method, the LSTM (long term short term memory). Other than existing prediction models, the proposed one uses only the cloudiness among the information forecasted from the national meterological forecast center. The future cloudiness is generally announced with four categories and for three-hour intervals. In this work, a daily irradiance pattern is used as an input vector to the LSTM together with that cloudiness information. The proposed model showed an error of 5% for learning and 30% for prediction. This level of error has lower influence on the load prediction in typical building cases.

Assessing the Impact of Long-Term Climate Variability on Solar Power Generation through Climate Data Analysis (기후 자료 분석을 통한 장기 기후변동성이 태양광 발전량에 미치는 영향 연구)

  • Chang Ki Kim;Hyun-Goo Kim;Jin-Young Kim
    • New & Renewable Energy
    • /
    • v.19 no.4
    • /
    • pp.98-107
    • /
    • 2023
  • A study was conducted to analyze data from 1981 to 2020 for understanding the impact of climate on solar energy generation. A significant increase of 104.6 kWhm-2 was observed in the annual cumulative solar radiation over this period. Notably, the distribution of solar radiation shifted, with the solar radiation in Busan rising from the seventh place in 1981 to the second place in 2020 in South Korea. This study also examined the correlation between long-term temperature trends and solar radiation. Areas with the highest solar radiation in 2020, such as Busan, Gwangju, Daegu, and Jinju, exhibited strong positive correlations, suggesting that increased solar radiation contributed to higher temperatures. Conversely, regions like Seosan and Mokpo showed lower temperature increases due to factors such as reduced cloud cover. To evaluate the impact on solar energy production, simulations were conducted using climate data from both years. The results revealed that relying solely on historical data for solar energy predictions could lead to overestimations in some areas, including Seosan or Jinju, and underestimations in others such as Busan. Hence, considering long-term climate variability is vital for accurate solar energy forecasting and ensuring the economic feasibility of solar projects.

Durability Evaluation Study of Re-manufactured Photovoltaic Modules (재 제조 태양광모듈의 내구성능 평가 연구)

  • Kyung Soo Kim
    • Current Photovoltaic Research
    • /
    • v.12 no.1
    • /
    • pp.17-23
    • /
    • 2024
  • Photovoltaic (PV) power generation is the world's best and largest renewable energy that generates electricity with infinite sunlight. Solar cell modules are a component of photovoltaic power generation and must have a long-term durability of at least 25 years. The development of processes and equipment that can be recovered through the recycling of metals and valuable metals when the solar module's lifespan is over has been completed to the level of commercialization, but few processes have been developed that require repair due to initial defects. This is mainly due to the economic problems caused by remaking. However, if manufacturing processes such as repairing solar cell modules that have been proven to be early defects are established and the technical review of long-term reliability and durability reaches a certain level, it is considered that it will be a recommended process technology for environmental economics. In this paper, assuming that a defective solar cell module occurs artificially, a manufacturing process for replacement of solar cells was developed, and a technical verification of the manufacturing technology was conducted through long-term durability evaluation in accordance with KS C 8561. Through this, it was determined that remanufacturing technology for solar cell replacement of solar cell modules that occurred in a short period of time after installation was possible, and the research results were announced through a journal to commercialize solar modules using manufacturing technology in the solar market in the future.

Prediction of Long-term Solar Activity based on Fractal Dimension Method

  • Kim, Rok-Soon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.45.3-46
    • /
    • 2016
  • Solar activity shows a self-similarity as it has many periods of activity cycle in the time series of long-term observation, such as 13.5, 51, 150, 300 days, and 11, 88 years and so on. Since fractal dimension is a quantitative parameter for this kind of an irregular time series, we applied this method to long-term observations including sunspot number, total solar irradiance, and 3.75 GHz solar radio flux to predict the start and maximum times as well as expected maximum sunspot number for the next solar cycle. As a result, we found that the radio flux data tend to have lower fractal dimensions than the sunspot number data, which means that the radio emission from the sun is more regular than the solar activity expressed by sunspot number. Based on the relation between radio flux of 3.75 GHz and sunspot number, we could calculate the expected maximum sunspot number of solar cycle 24 as 156, while the observed value is 146. For the maximum time, estimated mean values from 7 different observations are January 2013 and this is quite different to observed value of February 2014. We speculate this is from extraordinary extended properties of solar cycle 24. As the cycle length of solar cycle 24, 10.1 to 12.8 years are expected, and the mean value is 11.0. This implies that the next solar cycle will be started at December 2019.

  • PDF

Study on long-term Performance characteristics of various solar thermal system for heating protected horticulture system (태양열 시설원예 난방시스템의 장기성능 특성 분석 연구)

  • Lee, Sang-Nam;Kang, Yong-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.3
    • /
    • pp.1-8
    • /
    • 2006
  • The objective of this research is to study on the analysis of long-term performance characteristics of various solar thermal system for heating protected horticulture system for reducing heating cost, increasing the value of product by environment control, and developing advanced culture technology by deploying solar thermal system. Long term field test for the demonstration was carried out in horticulture complex in Jeju Island. Reliability and economic aspect of the system which was operated complementary with thermal storage and solar hot water generation were analyzed by investigating collector efficiency, operation performance, and control features. Optimum operating condition and its characteristics were closely investigated by changing the control condition based on the temperature difference which is the most important operating parameter. However, it is expected that, in high-insolation areas where large-scale ground storage is adaptable, solar system demonstrated in the research could be economically competitive and promisingly disseminate over various application areas.

Long-Term Shelf Lifetime of Polymer:Nonfullerene Solar Cells Stored under Dark and Indoor Light Environment

  • Lee, Sooyong;Kim, Hwajeong;Kim, Youngkyoo
    • Current Photovoltaic Research
    • /
    • v.8 no.4
    • /
    • pp.107-113
    • /
    • 2020
  • Here we report the long-term stability of polymer:nonfullerene solar cells which were stored under dark and indoor light condition. The polymer:nonfullerene solar cells were fabricated using bulk heterojunction (BHJ) layers of poly[(2,6-(4,8-bis(5-(2-ethylhexyl) thiophen-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione))] (PBDB-T) and 3,9-bis(6-methyl-2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2',3-d']-s-indaceno[1,2-b:5,6-b']dithiophene (IT-M). To investigate their long-term stability, the PBDB-T:IT-M solar cells were stored in an argon-filled glove box. One set of the fabricated solar cells was completely covered with an aluminum foil to prevent any effect of light, whereas another set was exposed to indoor light. The solar cells were subjected to a regular performance measurement for 40 weeks. Results revealed that the PBDB-T:IT-M solar cells underwent a gradual decay in performance irrespective of the storage condition. However, the PBDB-T:IT-M solar cells stored under indoor light condition exhibited relatively lower power conversion efficiency (PCE) than those stored under the dark. The inferior stability of the solar cells under indoor light was explained by the noticeably changed optical absorption spectra and dark spot generation, indicative of degradations in the BHJ layers.

Study on the performance analysis of long-term field test for protected horticulture heating system using solar thermal energy (태양열 시설원예 난방시스템 장기실증 성능분석 연구)

  • Lee Sang-Nam;Kang Yong-Heack;Yu Chang-Kyun;Kim Jin-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.403-407
    • /
    • 2005
  • Objective of the research is to demonstrate solar thermal space and ground heating system which is integrated to a greenhouse culture facility for reducing heating cost, increasing the value of product by environment control, and developing advanced culture technology by deploying solar thermal system. Field test for the demonstration was carried out in horticulture complex in Jeju Island. Medium scale solar hot water system was installed in a ground heating culture facility. Reliability and economic aspect of the system which was operated complementary with thermal storage and solar hot water generation were analyzed by investigating collector efficiency, operation performance, and control features. Short term day test on element performance and Long term test of the whole system were carried out. Optimum operating condition and its characteristics were closely investigated by changing the control condition based on the temperature difference which is the most important operating parameter. For establishing more reliable and optimal design data regarding system scale and operation condition, continuous operation and monitoring on the system need to be further carried out. However, it is expected that, in high-insolation areas where large-scale ground storage is adaptable, solar system demonstrated in the research could be economically competitive and promisingly disseminate over various application areas.

  • PDF

Study on the performance analysis of long-term field test for protected horticulture heating system using solar thermal energy (태양열 시설원예 난방시스템 장기실증 성능분석 연구)

  • Lee Sang-Nam;Kang Yong-Heack;Yu Chang-Kyun;Kim Jin-Soo
    • New & Renewable Energy
    • /
    • v.1 no.2 s.2
    • /
    • pp.53-59
    • /
    • 2005
  • Objective of the research is to demonstrate solar thermal space and ground heating system which is integrated to a green-house culture facility for reducing healing cost, Increasing the value of product by environment control, and developing advanced culture technology by deploying solar thermal system. Field test for the demonstration was carried out in horticulture complex In Jeju Island. Medium scale solar hot water system was installed in a ground heating culture facility. Reliability and economic aspect of the system which was operated complementary with thermal storage and solar hot water generation were analyzed by investigating collector efficiency, operation performance, and control features. Short term day test on element performance and Long term test of the whole system were carried out. Optimum operating condition and its characteristics were closely Investigated by changing the control condition based on the temperature difference which Is the most important operating parameter For establishing more reliable and optimal design data regarding system scale and operation condition, continuous operation and monitoring on the system need to be further carried out. However, It is expected that, in high-insolation areas where large-scale ground storage is adaptable, solar system demonstrated in the research could be economically competitive and promisingly disseminate over various application areas.

  • PDF

Analysis and Control of Series$\cdot$Parallels Connection Characteristics for Virtual Implementation of 50[W] Solar Cell Module (50[W]급 태양전지의 가상 구현을 위한 모듈의 직$\cdot$병렬 연결 특성 해석 및 제어)

  • Han J. M.;Ryu T. G.;Gho J. S.;Choe G. H.
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.53-57
    • /
    • 2002
  • The solar energy is purity and infinity. Solar power converter were used to convert the electrical energy from the solar arrays to a stable and reliable power source. So many countries research this solar energy system The photovoltaic system is construct many solar cell array. In this paper, new implementation solar system was showed buck converter that V-I curve produced. This system can be used to study the short-term and long-term performances of solar cell and efficiency. This system is a far more cost effective and reliable replacement for field and outdoor flight testing. Study of buck converter, analysis and control series or parallels connection characteristics of solar cell way.

  • PDF

Long-Term Experiments of Cooling/Cleaning on Surface of 200-kW PV Power Array (200kW 급 태양광발전 어레이 표면의 냉각/세정에 대한 장기 실증 실험)

  • Han, Jun Sun;Jeong, Seong Dae;Yu, Sang Phil;Lee, Seong Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.11
    • /
    • pp.971-975
    • /
    • 2013
  • In general, the solar photovoltaic power increases with higher solar insolation. However, the solar cell generation efficiency reduces because the solar cell surface is heated by solar insolation. According to advanced research, with a $1^{\circ}C$ increase in the solar cell surface temperature, the generation efficiency decreases by ~0.5%. To solve this problem, we conducted experiments in which we attempted to reduce the solar cell surface temperature using a water jet spray. In this study, we found the long-term experimental results of increases in solar power generation. The experimental results show a comparison of the site with and without cooling and cleaning equipment being installed. The results of the long-term experiments show that solar photovoltaic power generation is increased by at least 13% up to 19% with cooling and cleaning.