• Title/Summary/Keyword: solar photocatalysis

Search Result 28, Processing Time 0.019 seconds

Carbon Doping of TiO2 for Visible Light Photo Catalysis - A review

  • Palanivelu, K.;Im, Ji-Sun;Lee, Young-Seak
    • Carbon letters
    • /
    • v.8 no.3
    • /
    • pp.214-224
    • /
    • 2007
  • The field of photocatalysis is one of the fastest growing areas both in research and commercial fields. Titanium dioxide is the most investigated semi-conductor material for the photocatalysis applications. Research to achieve $TiO_2$ visible light activation has drawn enormous attentions because of its potential to use solar light. This paper reviews the attempts made to extend its visible photocatalytic activity by carbon doping. Various approaches adopted to incorporate carbon to $TiO_2$ are summarized highlighting the major developments in this active research field. Theoretical features on carbon doping are also presented. Future scenario in the rapidly developing and exciting area is outlined for practical applications with solar light.

Photocatalytic degradation of MTBE in gas phase (광촉매 반응에 의한 기상 MTBE 분해)

  • Park, Sang-Eun;Joo, Hyun-Ku;Jeong, Hee-Rok;Chun, Myung-Suk;Auh, Chung-Moo;Kang, Joon-Wun
    • Journal of the Korean Solar Energy Society
    • /
    • v.21 no.2
    • /
    • pp.55-67
    • /
    • 2001
  • This study contains the photocatalytic degradation of methyl-tert-butyl ether(MTBE), one of water-contaminating substances, into $CO_2$. Herein was investigated factors, kinetics, and reaction pathways related with MTBE degradation. This works is possible to be applied in the field of environmental remediation such as undergroundwater purification with optimized system configuration in the near future.

  • PDF

An Experimental Study for the Construction of Photocatalytic Method Concrete Road Structure (광촉매 콘크리트 도로 구조물의 효율적 시공방법에 대한 실험적 연구)

  • Hong, Sung Jae;Lee, Seung Woo
    • International Journal of Highway Engineering
    • /
    • v.15 no.6
    • /
    • pp.1-9
    • /
    • 2013
  • PURPOSES : About 35% of air pollutant is occurred from road transport. NOx is the primary pollutant. Recently, the importance of NOx removal has arisen in the world. $TiO_2$ is very efficient for removing NOx by photocatalytic reaction. The mechanism of removing NOx is the reaction of photocatalysis and solar energy. Therefore, $TiO_2$ in concrete need to be contacted with solar radiation to be activated. In general, $TiO_2$ concrete are produced by substitute $TiO_2$ as a part of concrete binder. However, 90% of $TiO_2$ in the photocatalysis can not contacted with the pollutant in the air and solar radiation. Coating and penetration method are attempted as the alternative of mixing method in order to locate $TiO_2$ to the surface of structure. METHODS : The goal of this study was to attempt to locate $TiO_2$ to the surface of concrete, so we can use the concrete in pavement construction. The distribution of $TiO_2$ along the depth were confirmed by basing on the comparison of $TiO_2$ compare by using the EDAX(Energy Dispersive X-ray Spectroscopy). RESULTS : $TiO_2$ were distributed within 3mm from concrete surface. This distribution of $TiO_2$ is desirable, since the $TiO_2$ induce photocatalysis are located to where they can be contacted with the air pollutant and solar radiation. CONCLUSIONS : Nano size $TiO_2$ is easily penetration in the top 3mm of concrete surface. By the penetration $TiO_2$ concrete can be produced with the use of only 10% of $TiO_2$, by comparing the mixing types.

Study on the characteristics of optical fiber for photocatalytic system (광촉매 반응 시스템을 위한 광섬유 광특성 조사)

  • Jeong, Hee-Rok;Joo, Hyun-Ku;Park, Sang-Eun;Jun, Myung-Seok;Auh, Chung-Moo;Moon, Il
    • Journal of the Korean Solar Energy Society
    • /
    • v.21 no.2
    • /
    • pp.45-54
    • /
    • 2001
  • In this study, the characteristics of optical fibers for the application in photocatalytic system was investigated using the intentionally designed accessories for spectrometer and radiometer to resolve the problems associated with the conventional system such as cost and structural restrictions from artificial lamp usage, to broaden the application fields into underground, and to utilize solar light in the future. To do this two kinds of optical fibers, plastic optical fiber (POF) and quartz optical fiber (QOF) were compared in terms of characteristics related with light transmittance and absorption and reactivity in TCE degradation.

  • PDF

Photocatalysis and Its Applications (광촉매반응과 그 응용)

  • Jung, Kyoung Soo;Lee, Ho In
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.12
    • /
    • pp.682-710
    • /
    • 1997
  • Photocatalysis, which can be applied to get energy economically, to synthesize useful materials, and to remove environmentally harmful materials by transforming solar energy to chemical energy, has many advantages over conventional heterogeneous catalysis. In this review article, both heterogeneous and homogeneous photocatalyses were discussed focusing on the principles of photocatalysis, the modification of the photocatalysts, hydrogen formation by water decomposition, and environmental application of photocatalysis.

  • PDF

Photocatalytic Degradation of Methyl tert-Butyl Ether (MTBE): A review

  • Seddigi, Zaki S.;Ahmed, Saleh A.;Ansari, Shahid P.;Yarkandi, Naeema H.;Danish, Ekram;Oteef, Mohammed D.Y.;Cohelan, M.;Ahmed, Shakeel;Abulkibash, Abdallah M.
    • Advances in environmental research
    • /
    • v.3 no.1
    • /
    • pp.11-28
    • /
    • 2014
  • Advanced oxidation processes using UV and catalysts like $TiO_2$ and ZnO have been recently applied for the photocatalytic degradation of MTBE in water. Attempts have been made to replace the UV radiation by the solar spectrum. This review intends to shed more light on the work that has been done so far in this area of research. The information provided will help in crystallizing the ideas required to shift the trend from UV photocatalysis to sunlight photocatalysis. The careful optimization of the reaction parameters and the type of the dopant employed are greatly responsible for any enhancement in the degradation process. The advantage of shifting from UV photocatalysts to visible light photocatalysts can be observed when catalysts like $TiO_2$ and ZnO are doped with suitable metals. Therefore, it is expected that in the near future, the visible light photocatalysis will be the main technique applied for the remediation of water contaminated with MTBE.

A Study on the Degradation of Parathion and Reduction of Acute Toxicity in Solar $TiO_2$ Photocatalysis (태양광 $TiO_2$ 광촉매를 이용한 Parathion의 분해와 독성저감에 관한 연구)

  • Kim, Tak-Soo;Kim, Jung-Kon;Choi, Kyung-Ho;Zoh, Kyung-Duk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.8
    • /
    • pp.822-828
    • /
    • 2005
  • The photocatalytic degradation of methyl parathion was carried out using a circulating $TiO_2$/solar system. Under the photocatalytic condition, parathion was more effectively degraded than by the photolysis or $TiO_2$ only condition. The parathion degradation followed pseudo first-order kinetics. With photocatalysis, 10 mg/L parathion was completely degraded within 90 min with a TOC decrease exceeding 63% after 150 min. The nitrogen from parathion was recovered mainly as ${NO_2}^-$, ${NO_3}^-$, and ${NH_4}^+$, 80% of sulfur as ${SO_4}^{2-}$, and less than 5% of phosphorus as ${PO_4}^{3-}$ during photocatalysis. The organic intermediates 4-nitrophenol and paraoxon were also identified, and these were further degraded. Two different bioassays using V. fischeri and D. magna were employed to measure the toxicity reduction in the solutions treated by both photocatalysis and photolysis. Relative toxicity was reduced almost completely after 150 min in both organisms under the photocatalysis, whereas in photolysis, 76 and 57% reduction was achieved for V. fischeri and D. magna, respectively. The acute toxicity reduction pattern corresponded with the decrease in parathion and TOC concentrations.

Treatment of Cu(II)-EDTA using Solar/$TiO_2$ Photocatalysis (태양광/$TiO_2$ 광산화를 이용한 Cu(II)-EDTA의 제거)

  • Shin, In-Soo;Lee, Seung-Mok;Yang, Jae-Kyu;Shin, Won-Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.2
    • /
    • pp.163-169
    • /
    • 2005
  • Photocatalytic oxidation of Cu(II)-EDTA has been studied using solar/$TiO_2$ photocatalysis as an energy source. Photocatalysis efficiency on the treatment of Cu(II)-EDTA was investigated using different types of solar collectors as well as by variation of the angles of solar collector solar light intensities, flow rates, and areas of solar collector. effect of $H_2O_2$ and types of $TiO_2$ catalyst on the treatment of Cu(II)-EDTA was also investigated. Removal of Cu(II) and DOC was favorable with a hemispherical collector than with a flat collector Removal of Cu(II) and DOC increased with increasing angles of solar collector up to $38^{\circ}$. Slurry type $TiO_2$ showed four-times higher removal efficiency than immobilized type $TiO_2$. Removal of both Cu(II) and DOC at a clear sky of solar light intensity ranging from 0.372 to $2.265\;mW/cm^2$ was greater than removal at a cloudy day of solar light intensity ranging from 0.038 to $1.129\;mW/cm^2$. From the result of this research that the removal efficiency of Cu(II) and DOC increased as the solar light intensity increased, it can be inferred that quantum yield in the destruction of Cu(II)-EDTA may directly related with the solar light intensity. Removal of Cu(II) increased as increasing the area of solar collector and was similar at lower flow rates white removal of Cu(II) was interfered at higher flow rates. When immobilized $TiO_2$ was used, removal efficiency of Cu(II) increased in the presence of $H_2O_2$ while negligible effect was found in the use of $TiO_2$ slurry.

Photomineralisation of Reactive Black 5 with ZnO using Solar and UV-A Light (태양광과 UV-A 빛 하에서 ZnO 을 이용한 Reactive Black 5의 광분해작용)

  • Amisha, S.;Selvam, K.;Sobana, N.;Swaminathan, M.
    • Journal of the Korean Chemical Society
    • /
    • v.52 no.1
    • /
    • pp.66-72
    • /
    • 2008
  • The photocatalytic degradation of a textile diazo dye in aqueous solution has been investigated under Solar and UV-A light. The effect of various parameters such as concentration of dye, amount of catalyst and pH on the degradation of dye has been studied. Addition of hydrogen peroxide, ammonium persulphate and isopropanol strongly influences the degradation rate. Kinetic analysis of photodegradation reveals that the degradation follows approximately pseudo first order kinetics according to the Langmuir-Hinshelwood model. Carbon dioxide, nitrate and sulphate ions have been identified as mineralisation products. The photocatalyst ZnO was found to be more efficient in UV-A light than in Solar light.

Low Temperature Synthesis of Transparent, Vertically Aligned Anatase TiO2 Nanowire Arrays: Application to Dye Sensitized Solar Cells

  • In, Su-Il;Almtoft, Klaus P.;Lee, Hyeon-Seok;Andersen, Inge H.;Qin, Dongdong;Bao, Ningzhong;Grimes, C.A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.1989-1992
    • /
    • 2012
  • We present a low temperature (${\approx}70^{\circ}C$) method to prepare anatase, vertically aligned feather-like $TiO_2$ (VAFT) nanowire arrays $via$ reactive pulsed DC magnetron sputtering. The synthesis method is general, offering a promising strategy for preparing crystalline nanowire metal oxide films for applications including gas sensing, photocatalysis, and 3rd generation photovoltaics. As an example application, anatase nanowire films are grown on fluorine doped tin oxide coated glass substrates and used as the photoanode in dye sensitized solar cells (DSSCs). AM1.5G power conversion efficiencies for the solar cells made of 1 ${\mu}m$ thick VAFT have reached 0.42%, which compares favorably to solar cells made of the same thickness P25 $TiO_2$ (0.35%).