Browse > Article
http://dx.doi.org/10.12989/aer.2014.3.1.011

Photocatalytic Degradation of Methyl tert-Butyl Ether (MTBE): A review  

Seddigi, Zaki S. (Chemistry Department, Faculty of Applied Sciences, Umm Al-Qura University)
Ahmed, Saleh A. (Chemistry Department, Faculty of Applied Sciences, Umm Al-Qura University)
Ansari, Shahid P. (Chemistry Department, Faculty of Applied Sciences, Umm Al-Qura University)
Yarkandi, Naeema H. (Chemistry Department, Faculty of Applied Sciences, Umm Al-Qura University)
Danish, Ekram (Chemistry Department, Faculty of Science, King Abdulaziz University)
Oteef, Mohammed D.Y. (Chemistry Department, King Khalid University)
Cohelan, M. (Research Center for Brewing and Food Quality, Technische Universitat Munshen)
Ahmed, Shakeel (Center for Refining & Petrochemicals, Research Institute, King Fahd University of Petroleum & Minerals)
Abulkibash, Abdallah M. (Chemistry Department, King Fahd University of Petroleum & Minerals)
Publication Information
Advances in environmental research / v.3, no.1, 2014 , pp. 11-28 More about this Journal
Abstract
Advanced oxidation processes using UV and catalysts like $TiO_2$ and ZnO have been recently applied for the photocatalytic degradation of MTBE in water. Attempts have been made to replace the UV radiation by the solar spectrum. This review intends to shed more light on the work that has been done so far in this area of research. The information provided will help in crystallizing the ideas required to shift the trend from UV photocatalysis to sunlight photocatalysis. The careful optimization of the reaction parameters and the type of the dopant employed are greatly responsible for any enhancement in the degradation process. The advantage of shifting from UV photocatalysts to visible light photocatalysts can be observed when catalysts like $TiO_2$ and ZnO are doped with suitable metals. Therefore, it is expected that in the near future, the visible light photocatalysis will be the main technique applied for the remediation of water contaminated with MTBE.
Keywords
photocatalysis; degradation; MTBE; doping; $TiO_2$; ZnO;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Zhu, Y., Fu, Y. and Ni, Q.-Q. (2011), "Preparation and performance of photocatalytic $TiO_{2}$ immobilized on palladium-doped carbon fiber", Appl. Surface Sci., 257(6), 2275-2280.   DOI
2 Amir, D.Z., Nasser, A., Nir, S. and Mishael, Y.G. (2012), "Removal of methyl tertiary-butyl ether (MTBE) from water by polymer-zeolite composites", Micro. Meso. Mat., 151, 216-222.   DOI
3 Achten, C., Kolb, A. and Puttmann, W. (2002), "Methyl tert-butyl ether (MTBE) in river and wastewater in Germany", Environ. Sci. Tech., 36(17), 3652-3661.   DOI   ScienceOn
4 An, Y.-J., Kampbell, D.H. and Cook, M.L. (2002), "Co-Occurrence of MTBE and benzene, toluene, ethylbenzene, and xylene compounds at marinas in large reservoir", J. Environ. Eng., 128(9), 902-906.   DOI
5 Andreozzi, R., Caprio, V., Insola, A., Longo, G. and Tufano, V. (2000), "Photocatalytic oxidation of 4-nitrophenol in aqueous $TiO_{2}$slurries: an experimental validation of literature kinetic models", Chem. Tech. Biotech., 75(2), 131-136.   DOI
6 Anpo, M. and Takeuchi, M. (2006), "The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation", J. Catal., 216(1-2), 505-516.
7 Bagal, M.V. and Gogate, P.R. (2013), "Photocatalytic and Sonophotocatalytic degradation of alachlor using different photocatalyst", Adv. Environ. Res., Int. J., 2(4), 261-277.   DOI
8 Bertelli, M. and Selli, E. (2004), "Kinetic analysis on the combined use of photocatalysis, $H_{2}O_{2}$ photolysis, and sonolysis in the degradation of methyl tert-butyl ether", Appl.Catal. B: Environ., 52(3), 205-212.   DOI   ScienceOn
9 Barreto, R.D., Gray, K.A. and Anders, K. (1995), "Photocatalytic degradation of methyl-tert-butyl ether in $TiO_{2}$ slurries: A proposed reaction scheme", Water Res., 29(5), 1243-1248.   DOI   ScienceOn
10 Baus, C., Hung, H.W., Sacher, F., Fleig, M. and Brauch, H.-J. (2005), "MTBE in drinking water production occurrence and efficiency of treatment technologies", Acta Hydro. Hydrobio., 33(2), 118-132.   DOI
11 Bellardita, M., Addamo, M., Paola, A.D. and Palmisano, L. (2007), "Photocatalytic behaviour of metal-loaded $TiO_{2}$ aqueous dispersions and films", Chem. Phys., 339(1-3), 94-103.   DOI
12 Cater, S.R., Stefan, M.I., Bolton, J.R. and Safarzadeh-Amiri, A. (2000), "UV/$H_{2}O_{2}$ treatment of methyl tertbutyl ether in contaminated waters", Environ. Sci. Techn., 34(4), 659-662.   DOI   ScienceOn
13 Boulamanti, A.K. and Philippopoulos, C.J. (2008), "Photocatalytic degradation of methyl tert-butyl ether in the gas-phase: A kinetic study", J. Hazard. Mat., 160(1), 83-87.   DOI
14 Butler, E.C. and Davis, A.P. (1993), "Photocatalytic oxidation in aqueous titanium dioxide suspensions: the influence of dissolved transition metals", J. Photochem. Photobiol. A: Chem., 70(3), 273-283.   DOI
15 Callen, M.S., de la Cruz, M.T., Marinov, S., Murillo, R., Stefanova, M. and Mastral, A.M. (2007), "Flue gas cleaning in power stations by using electron beam technology: Influence on PAH emissions", Fuel Pro. Tech., 88(3), 251-258.   DOI
16 Chakrabarti, S. and Dutta, B.K. (2004), "Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst", J. Hazard. Mat., 112(3), 269-278.   DOI   ScienceOn
17 Colon, G., Maicu, M., Hidalgo, M.C. and Navio, J.A. (2006), "Cu-doped $TiO_{2}$ systems with improved photocatalytic activity", Appl. Catal. B: Environ., 67(1-2), 41-51.   DOI
18 Chan, M.S.M. and Lynch, R.J. (2003), "Photocatalytic degradation of aqueous methyl-tert-butyl-ether (MTBE) in a supported-catalyst reactor", Environ. Chem. Lett., 1(3), 157-160.   DOI
19 Chen, X. and Burda, C. (2008), "The electronic origin of the visible-light absorption properties of C-, N- and S-doped $TiO_{2}$ nanomaterials", J. Am. Chem. Soc., 130(15), 5018-5019.   DOI   ScienceOn
20 Cooper, W.J., Cramer, C.J., Martin, N.H., Mezyk, S.P., O'Shea, K.E. and von Sonntag, C. (2009), "Free radical mechanisms for the treatment of methyl tert-butyl ether (MTBE)via advanced oxidation/reductive processes in aqueous solutions", Chem. Rev., 109(3), 1302-1345.   DOI
21 Deeb, R.A., Scow, K.M. and Alvarez-Cohen, L. (2000), "Aerobic MTBE biodegradation: an examination of past studies, current challenges and future research directions", Biodegrad., 11(2-3), 171-186.   DOI   ScienceOn
22 Dijkstra, M.F.J., Buwalda, H., de Jong, A.W.F., Michorius, A., Winkelman, J.G.M. and Beenackers, A.A.C.M. (2001), "Experimental comparison of three reactor designs for photocatalytic water purification", C. Eng. Sci., 56(2), 547-555.   DOI
23 Ekambaram, S., Iikubo, Y. and Kudo, A., (2007), "Combustion synthesis and photocatalytic properties of transition metal-incorporated ZnO", J. Alloys Comp., 433(1-2), 237-240.   DOI
24 Fayolle, F., Vandecasteele, J.-P. and Monot, F. (2001), "Microbial degradation and fate in the environment of methyl tert-butyl ether and related fuel oxygenates", Appl. Microbio. Biotech., 56(3-4), 339-349.   DOI
25 Eslami, A., Nasseri, S., Yadollahi, B., Mesdaghinia, A., Vaezi, F. and Nabizadeh, R. (2009), "Removal of methy tert-butyl ether (MTBE) from contaminated water by photocatalytic process", Iran. J. Pub. Health, 38(2), 18-26.
26 Eslami, A., Nasseri, S., Yadollahi, B., Mesdaghinia, A., Vaezi, F., Nabizadeh, R. and Nazmara, S. (2008), "Photocatalytic degradation of methyl tert-butyl ether (MTBE) in contaminated water by ZnO nanoparticles", J. Chem. Techn. Biotech., 83(11), 1447-1453.   DOI   ScienceOn
27 Fujishima, A., Rao, T.N. and Tryk, D.A. (2000), "Titanium dioxide photocatalysis", J. Photochem. Photobiol. C: Photochem. Reviews, 1(1), 1-21.   DOI   ScienceOn
28 Fischer, A., Müller, M. and Klasmeier, J. (2003), "Determination of Henry's law constant for methyl tert-butyl ether (MTBE) at groundwater temperatures", Chemosphere, 54(6), 689-694.
29 Fitzgerald, C.B., Venkatesan, M., Lunney, J.G., Dorneles, L.S. and Coey, J.M.D. (2005), "Cobalt doped ZnO-a room temperature dilute magnetic semiconductor", Appl. Surf. Sci., 247(1-4), 493-496.   DOI
30 Fujishima, A. and Honda, K. (1972), "Electrochemical photolysis of water at a semiconductor electrode", Nature, 238(5358), 37-38.   DOI   ScienceOn
31 Gerischer, H. and Heller, A. (1991), "The role of oxygen in photooxidation of organic molecules on semiconductor particles", J. Phy. Chem., 95(13), 5261-5267.   DOI
32 Guillard, C., Charton, N. and Pichat, P. (2003), "Degradation mechanism of t-butyl methyl ether (MTBE) in atmospheric droplets", Chemosphere, 53(5), 469-477.   DOI
33 Gogate, P.R. and Pandit, A.B. (2004), "A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions", Adv. Environ. Res., 8(3-4), 501-551.   DOI   ScienceOn
34 Gomez, C.M., Angel, G.D., Tzompantzi, F., Gomez, R. and Torres-Martinez, L.M. (2012), "Photocatalytic degradation of p-cresol on Pt/${\gamma}$$Al_{2}O_{3}$-$TiO_{2}$ mixed oxides: Effect of oxidizing and reducing pre-treatments", J. Photo. Photobio. A: Chem., 236, 21-25.   DOI
35 Ho, W. and Yu, J.C. (2006), "Sonochemical synthesis and visible light photocatalytic behavior of CdSe and CdSe/$TiO_{2}$ nanoparticles", J. Molecul. Catal. A: Chem., 247(1-2), 268-274.   DOI   ScienceOn
36 Gopal, N.O., Lo, H.H. and Ke, S.C. (2008), "Chemical state and environment of boron dopant in B,N-Co-doped anatase $TiO_{2}$ nanoparticles: An avenue for probing diamagnetic dopants in $TiO_{2}$ by electron paramagnetic resonance spectroscopy", J. Am. Chem. Soc., 130, 2760-2761.   DOI
37 Hariharan, C. (2006), "Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles: Revisited", Appl. Catal., 304, 55-61.   DOI   ScienceOn
38 Herrmann, J.-M. (1999), "Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants", Catal. Today, 53(1), 115-129.   DOI   ScienceOn
39 Hu, Q., Zhang, C., Wang, Z., Chen, Y., Mao, K., Zhang, X., Xiong, Y. and Zhu, M. (2008), "Photodegradation of methyl tert-butyl ether (MTBE) by UV/$H_{2}O_{2}$ and UV/$TiO_{2}$", J. Hazard. Mat., 154(1-3), 795-803.   DOI
40 Jo, W.-K. and Yang, C.-H. (2010), "Visible-light-induced photocatalysis of low-level methyl-tertiary butyl ether (MTBE) and trichloroethylene (TCE) using element-doped titanium dioxide", Build. Environ., 45(4), 819-824.   DOI
41 Hua, Z., Manping, Z., Zongfeng, X. and Low, G.K.C. (1995), "Titanium dioxide mediated photocatalytic degradation of monocrotophos", Water Res., 29(12), 2681-2688.   DOI   ScienceOn
42 Kanai, H., Inouye, V., Goo, R., Chow, R., Yazawa, L. and Maka, J. (1994), "GC/MS Analysis of MTBE, ETBE, and TAME in Gasolines", Anal. Chem., 66(6), 924-927.   DOI
43 Hung, W.-C., Fu, S.-H., Tseng, J.-J., Chu, H. and Ko, T.-H. (2007), "Study on photocatalytic degradation of gaseous dichloromethane using pure and iron ion-doped $TiO_{2}$ prepared by the sol-gel method", Chemosphere, 66(11), 2142-2151.   DOI   ScienceOn
44 In, S., Orlov, A., Berg, R., Garcia, F., Pedrosa-Jimenez, S., Tikhov, M.S., Wright, D.S. and Lambert, R.M. (2007), "Effective visible light-activated B-doped and B, N-Codoped $TiO_{2}$ photocatalysts", J. Am. Chem. Soc., 129(45), 13790-13791.   DOI   ScienceOn
45 Kanade, K.G., Kale, B.B., Baeg, J.O., Lee, S.M., Lee, C.W., Moon, S.J. and Chang, H. (2007), "Self assembled aligned Cu doped ZnO nanoparticles for photocatalytic hydrogen production under visible light irradiation", Mat. Chem. Phy., 102(1), 98-104.   DOI   ScienceOn
46 Kim, D.K., O'Shea, K.E. and Cooper, W.J. (2012), "Oxidative degradation of alternative gasoline oxygenates in aqueous solution by ultrasonic irradiation: Mechanistic study", Sci. Total Environ., 430, 246-259.   DOI
47 Lim, L.L.P. and Lynch, R. (2011a), "Hydraulic performance of a proposed in situ photocatalytic reactor for degradation of MTBE in water", Chemosphere, 82(4), 613-620.   DOI
48 Kuburovic, N., Todorovic, M., Raicevic, V., Orlovic, A., Jovanovic, L., Nikolic, J., Kuburovic, V., Drmanic, S. and Solevic, T. (2007), "Removal of methyl tertiary butyl ether from wastewaters using photolytic, photocatalytic and microbiological degradation processes", Desal., 213(1-3), 123-128.   DOI
49 Liao, C.-H., Kang, S.-F. and Wu, F.-A. (2001), "Hydroxyl radical scavenging role of chloride and bicarbonate ions in the $H_{2}O_{2}$/UV process", Chemosphere, 44(5), 1193-1200.   DOI   ScienceOn
50 Li, D., Haneda, H., Labhsetwar, N.K., Hishita, S. and Ohashi, N. (2005), "Visible-light-driven photocatalysis on fluorine-doped $TiO_{2}$ powders by the creation of surface oxygen vacancies", Chem. Phys. Lett., 401(4-6), 579-584.   DOI   ScienceOn
51 Lim, L.L.P. and Lynch, R.J. (2011b), "In situ photocatalytic remediation of MTBE-contaminated water: Effects of organics and inorganics", Appl. Catal. A: General, 394(1-2), 52-61.   DOI
52 Liu, W.-J., Zeng, F.-X., Jiang, H., Zhang, X.-S. and Li, W.-W. (2012), "Composite $Fe_{2}O_{3}$ and $ZrO_{2}$/$Al_{2}O_{3}$ photocatalyst: Preparation, characterization, and studies on the photocatalytic activity and chemical stability", Chem. Eng. J., 180, 9-18.   DOI
53 Lu, C.-S. and Chiang, T.-Y (2009), "Photocatalytic degradation of ethyl tert-butyl ether in aqueous solution mediated by $TiO_{2}$ suspension: Parameter and reaction pathway investigations", J. Chin. Chem. Soc., 56(6), 1118-1127.   DOI
54 Mascolo, G., Ciannarella, R., Balest, L. and Lopez, A. (2008), "Effectiveness of UV-based advanced oxidation processes for the remediation of hydrocarbon pollution in the groundwater: A laboratory investigation", J. Hazard. Mat., 152(3), 1138-1145.   DOI   ScienceOn
55 Naeem, M., Hasanain, S.K. and Mumtaz, A. (2008), "Electrical transport and optical studies of ferromagnetic cobalt doped ZnO nanoparticles exhibiting a metal-insulator transition", J. Physics: Cond. Matt., 20(2), 025210.   DOI
56 Orlov, A., Jefferson, D.A., Tikhov, M. and Lambert, R.M. (2007), "Enhancement of MTBE photocatalytic degradation by modification of $TiO_{2}$ with gold nanoparticles", Cat. Comm., 8(5), 821-824.   DOI   ScienceOn
57 Mehrjouei, M., Müller, S. and Moller, D. (2012), "Removal of fuel oxygenates from water using advanced oxidation technologies by means of falling film reactor", Chem. Eng. J., 211-212, 353-359.   DOI
58 Mezyk, S.P., Jones, J., Cooper, W.J., Tobien, T., Nickelsen, M.G., Adams, J.W., O'Shea, K.E., Bartels, D.M., Wishart, J.F., Tornatore, P.M., Newman, K.S., Gregoire, K. and Weidman, D.J. (2004), "Radiation chemistry of methyl tert-butyl ether in aqueous solution", Environ. Sci. Tech., 38(14), 3994-4001.   DOI
59 Miyauchi, M., Nakajima, A., Watanabe, T. and Hashimoto, K. (2002), "Photocatalysis and photoinduced hydrophilicity of various metal oxide thin films", Chem. Mater., 14(6), 2812-2816.   DOI   ScienceOn
60 Ou, H.-H. and Lo, S.-L. (2007), "Effect of Pt/Pd-doped $TiO_{2}$ on the photocatalytic degradation of trichloroethylene", J. Mol. Catal. A: Chemistry, 275(1-2), 200-205.   DOI
61 Panda, N., Sahoo, H. and Mohapatra, S. (2011), "Decolourization of methyl orange using Fenton like mesoporous $Fe_{2}O_{3}$-$SiO_{2}$ composite", J. Hazard. Mat., 185(1), 359-365.   DOI   ScienceOn
62 Park, S.E., Joob, H. and Kang, J.W. (2003), "Photodegradation of methyl tertiary butyl ether (MTBE) vapor with immobilized titanium dioxide", Sol. Ene. Mat. Sol. Cells, 80(1), 73-84.   DOI
63 Rehman, S., Ullah, R., Butt, A.M. and Gohar, N.D. (2009), "Strategies of making $TiO_{2}$ and ZnO visible light active", J. Hazard. Mater., 170(2-3), 560-569.   DOI
64 Rodriguez-Gonzalez, V., Zanella, R., del Angel, G. and Gomez, R. (2008), "MTBE visible-light photocatalytic decomposition over Au/$TiO_{2}$ and Au/$TiO_{2}$-$Al_{2}O_{3}$ sol-gel prepared catalysts", J. Mol. Catal. A: Chemistry, 281(1-2), 93-98.   DOI
65 Perez, M., Torrades, F., García-Hortal, J.A., Domenech, X. and Peral, J. (2002), "Removal of organic contaminants in paper pulp treatment effluents under Fenton and photo-Fenton conditions", Appl. Catal. B: Environ., 36(1), 63-74.   DOI   ScienceOn
66 Prei, S., Kachina, A., Santiago, N.C. and Kallas, J. (2005), "The dependence on temperature of gas-phase photocatalytic oxidation of methyl tert-butyl ether and tert-butyl alcohol", Catal. Today, 101(3-4), 353-358.   DOI
67 Rabindranathan, S., Devipriya, S. and Yashodharan, S. (2003), "Photocatalytic degradation of phosphamidon on semiconductor oxides", J. Hazard. Mat., 102(2-3), 217-229.   DOI
68 Safari, M., Nikazar, M., Dadvar, M. and Talebei, R. (2013), "Photocatalytic degradation of methyl tert-butyl ether (MTBE) by Fe-$TiO_{2}$ nanoparticles", J. Indust. Eng. Chem., 19(5), 1697-1702. DOI: http://dx.doi.org/10.1016/j.jiec.2013.02.008   DOI   ScienceOn
69 Sahle-Demessie, E., Richardson, T., Almquist, C.B. and Pillai, U.R. (2002), "Comparison of liquid and gas-phase phootooxidation of MTBE: Synthetic and field samples", J. Environ. Eng., 128(9), 782-790.   DOI
70 Serpone, N. (2006), "Isthe band gap of pristine $TiO_{2}$ narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts?", J. Phys. Chem. B, 110(48), 24287-24293.   DOI   ScienceOn
71 Shinde, S.S., Shinde, P.S., Bhosale, C.H. and Rajpure, K.Y. (2011), "Zinc oxide mediated heterogeneous photocatalytic degradation of organic species under solar radiation", J. Photochem. Photobio. B: Biology, 104(3), 425-433.   DOI
72 Seddigi, Z.S., Ahmed, S.A., Ansari, S.P., Danish, E., Alkibash, A.A. and Ahmed, S. (2013), "Kinetics and photodegradation study of aqueous methyl tert-butyl ether using zinc oxide: The effect of particle size", Int. J. Photo., 2013, 206129, pp. 1-7.
73 Seddigi, Z.S., Bumajdad, A., Ansari, S.P., Ahmed, S.A., Danish, E., Yarkandi, N.H. and Ahmed, S. (2014), "Preparation and characterization of Pd doped ceria-ZnOnanocomposite catalyst for methyl tert-butyl ether (MTBE) photodegradation", J. Hazard. Mat., 264, 71-78.   DOI
74 Selli, E., Bianchi, C.L., Pirola, C. and Bertelli, M. (2005), "Degradation of methyl tert-butyl ether in water: effects of the combined use of sonolysis and photocatalysis", Ultra. Sonochem., 12(5), 395-400.   DOI   ScienceOn
75 Song, L., Qiu, R., Mo, Y., Zhang, D., Wei, H. and Xiong, Y. (2007), "Photodegradation of phenol in a polymer-modified $TiO_{2}$ semiconductor particulate system under the irradiation of visible light", Catal. Commun., 8(3), 429-433.   DOI
76 Srinivasana, G. and Kumar, J. (2008), "Effect of Mn doping on the microstructures and optical properties of sol-gel derived ZnO thin films", J. Cryst. Gro., 310(7-9), 1841-1846.   DOI   ScienceOn
77 Vamathevan, V., Tse, H., Amal, R., Low, G. and McEvoy, S. (2001), "Effects of $Fe^{3+}$ and Ag+ ions on the photocatalytic degradation of sucrose in water", Catal. Today, 68(1-3), 201-208.   DOI
78 Tabrez, S., Shakil, S., Urooj, M., Abuzenadah, A.M., Damanhouri, G.A. and Ahmad, M. (2011), "Genotoxicity testing and biomarker studies on surface waters: An overview of the techniques and their efficacies", J. Environ. Sci. Health, Part C, 29(3), 250-275.   DOI
79 Subramanian, V., Pangarkar, V.G. and Beenackers, A.A.C.M. (2000), "Photocatalytic degradation of p-hydroxybenzoic acid: relationship between substrate adsorption and photocatalytic degradation", Clean Prod. Proc., 2(3), 149-156.   DOI
80 Sun, H., Bai, Y., Jin, W. and Xu, N. (2008), "Visible-light-driven $TiO_{2}$ catalysts doped with low-concentration nitrogen species", Sol. Ener. Mat. Sol. Cells, 92(1), 76-83.   DOI
81 Vohra, M.S. and Davies, A.P. (2000), "$TiO_{2}$-assisted photocatalysis of lead-EDTA", Water Res., 34(3), 952-964.   DOI
82 Wang, B., Li, Q., Wang, W., Li, Y. and Zhai, J. (2011), "Preparation and characterization of $Fe^{3+}$-doped $TiO_{2}$ on fly ash cenospheres for photocatalytic application", Appl. Surface Sci., 257(8), 3473-3479.   DOI
83 Wang, Y.S., Thomas, P.J. and O'Brien, P. (2006), "Optical properties ofZnO nanocrystals doped with Cd, Mg, Mn, and Fe ions", J. Phy. Chem., B, 110(43), 21412-21415.   DOI
84 Wasi, S., Tabrez, S. and Ahmad, M. (2013), "Toxicological effects of major environmental pollutants: an overview", Environ. Mon. Assess., 185(3), 2585-2593.   DOI
85 Wong, C.C. and Chu, W. (2003), "The direct photolysis and photocatalytic degradation of alachlor at different $TiO_{2}$ and UV sources", Chemosphere, 50(8), 981-987.   DOI   ScienceOn
86 Xu, X.-R., Zhao, Z.-Y., Li, X.-Y. and Gu, J.-D. (2004), "Chemical oxidative degradation of methyl tert-butyl ether in aqueous solution by Fenton's reagent", Chemosphere, 55(1), 73-79.   DOI
87 Xin, B., Ren, Z., Wang, P., Liu, J., Jing, L. and Fu, H. (2007), "Study on the mechanisms of photoinduced carriers separation and recombination for $Fe^{3+}$-$TiO_{2}$ photocatalysts", Appl. Surface Sci., 253(9), 4390-4395.   DOI   ScienceOn
88 Wu, Y., Xing, M. and Zhang, J. (2011), "Gel-hydrothermal synthesis of carbon and boron co-doped $TiO_{2}$ and evaluating its photocatalytic activity", J. Hazard. Mater., 192(1), 368-373.
89 Xiao, Q., Zhang, J., Xiao, C. and Tan, X. (2007), "Photocatalytic decolorization of methylene blue over $Zn_{1-x}Co_{x}O$ under visible light irradiation", Mat. Sci. Eng. B, 142(2-3), 121-125.   DOI
90 Zang, Y. and Farnood, R. (2005a), "Effects of hydrogen peroxide concentration and ultraviolet light intensity on methyl tert-butyl ether degradation kinetics", Chem. Eng.. Sci., 60(6), 1641-1648.   DOI
91 Zang, Y. and Farnood, R. (2005b), "Photocatalytic decomposition of methyl tert-butyl ether in aqueous slurry of titanium dioxide", Appl. Catal. B: Environ., 57(4), 275-282.   DOI   ScienceOn
92 Zhong, J., Li, J.Z., He, X., Zeng, J., Lu, Y., Hu, W. and Lin, K. (2012), "Improved photocatalytic performance of Pd-doped ZnO", Current Appl. Phys., 12(3), 998-1001.   DOI
93 Zhu, X., Yuan, C., Bao, Y., Yang, J. and Wu, Y. (2005), "Photocatalytic degradation of pesticide pyridaben on $TiO_{2}$ particles", J. Mol. Catal. A: Chem., 229(1-2), 95-105.   DOI
94 Arana, J., Alonso, A.P., Rodriguez, J.M.D., Herrera, J.A., Gonzalez, O. and Pena, J.P. (2008), "Comparative study of MTBE photocatalytic degradation with $TiO_{2}$ and Cu-$TiO_{2}$", Appl. Catal. B: Environ., 78(3-4), 355-363.   DOI
95 Shinde, V.R., Gujar, T.P., Lokhande, C.D., Mane, R.S. and Han, S.-H. (2006), "Mn doped and undoped ZnO films: a comparative structural, optical and electrical properties study", Mat. Chem. Phy., 96(2-3), 326-330.   DOI   ScienceOn
96 Chan, C.-C., Chang, C.-C., Hsu, W.-C., Wang, S.-K. and Lin, J. (2009), "Photocatalytic activities of Pd-loaded mesoporous $TiO_{2}$ thin films", Chem. Eng. J., 152(2-3), 492-497.   DOI
97 Esplugas, S., Gimenez, J., Contreras, S., Pascual, E. and Rodriguez, M. (2002), "Comparison of different advanced oxidation processes for phenol degradation", Water Res., 36(4), 1034-1042.   DOI   ScienceOn
98 Klauson, D., Preis, S., Portjanskaja, E., Kachina, A., Krichevskaya, M. and Kallas, S.J. (2005), "The influence of Ferrous/Ferric ions on the efficiency of photocatalytic oxidation of pollutants in groundwater", J. Environ. Tech., 26(6), 653-661.   DOI
99 Salanitro, J.P., Johnson, P.C., Spinnler, G.E., Maner, P.M., Wisniewski, H.L. and Bruce, C. (2000), "Field-scale demonstration of enhanced MTBE bioremediation through aquifer bioaugmentation and oxygenation", Environ. Sci. Tech., 34(19), 4152-4162.   DOI
100 Wu, T.-N., Pan, T.-C. and Chen, L.-C. (2012), "Electrophotocatalysis of aqueous methyl tert-butyl ether on a titanium dioxide coated electrode", Electroch. Acta, 86, 170-176.   DOI