• Title/Summary/Keyword: solar energy production

Search Result 439, Processing Time 0.023 seconds

High-Efficiency Heterojunction with Intrinsic Thin-Layer Solar Cells: A Review

  • Dao, Vinh Ai;Kim, Sangho;Lee, Youngseok;Kim, Sunbo;Park, Jinjoo;Ahn, Shihyun;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.1 no.2
    • /
    • pp.73-81
    • /
    • 2013
  • Heterojunction with Intrinsic Thin-layer (HIT) solar cells are currently an important subject in industrial trends for thinner solar cell wafers due to the low-temperature of production processes, which is around $200^{\circ}C$, and due to their high-efficiency of 24.7%, as reported by the Panasonic (Sanyo) group. The use of thinner wafers and the enhancement of cell performance with fabrication at low temperature have been special interests of the researchers. The fundamental understanding of the band bending structures, choice of materials, fabrication process, and nano-scale characterization methods to provide necessary understanding of the interface passivation mechanisms, emitter properties, and requirements for transparent oxide conductive layers is presented in this review. This information should be used for the performance characterization of the developing technologies for HIT solar cells.

Operational Characteristics of High-Performance kW class Alkaline Electrolyzer Stack for Green Hydrogen Production

  • Choi, Baeck B.;Jo, Jae Hyeon;Lee, Taehee;Jeon, Sang-Yun;Kim, Jungsuk;Yoo, Young-Sung
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.302-307
    • /
    • 2021
  • Polymer electrolyte membrane (PEM) electrolyzer or alkaline electrolyzer is required to produce green hydrogen using renewable energy such as wind and/or solar power. PEM and alkaline electrolyzer differ in many ways, instantly basic materials, system configuration, and operation characteristics are different. Building an optimal water hydrolysis system by closely grasping the characteristics of each type of electrolyzer is of great help in building a safe hydrogen ecosystem as well as the efficiency of green hydrogen production. In this study, the basic operation characteristics of a kW class alkaline water electrolyzer we developed, and water electrolysis efficiency are described. Finally, a brief overview of the characteristics of PEM and alkaline electrolyzer for large-capacity green hydrogen production system will be outlined.

Future Prospect of Perovskite Solar Cells for Practical Applications (페로브스카이트 태양전지 안정성 개선을 위한 광활성층 연구 현황과 전망)

  • Song, Jae-Kwan;Kim, Do-Heyoung
    • Korean Chemical Engineering Research
    • /
    • v.58 no.1
    • /
    • pp.1-20
    • /
    • 2020
  • Development of efficient methods for clean energy production became a critical issue to improve the quality of human lives. Solar cells is considered as one of the alternative solutions to resolve the issue. Although Si-based solar cells are only popularly utilized for practical applications, high manufacturing cost is considered as a serious drawback for further versatile applications. Thus, different types of are being investigated aiming to replace the Si-based solar cells. Recently, perovskite solar cells (PSC) are considered as a potential replacement for Si-based solar cells due to their low production cost, high power conversion efficiency, light weight and possibility of flexible device fabrication. Thus, we have reviewed the challenges of PSC faced with practical application, particularly on stability.

An Evaluation of Application Possibility of Window System in the Building based on Optical Characteristics Analysis of DSSC (염료감응태양전지의 광학특성분석을 통한 건축창호 적용가능성 평가 연구)

  • Sim, Se-Ra;Yoon, Jong-Ho;Jeong, Seon-Yeong;Baek, Nam-Choon
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.3
    • /
    • pp.109-115
    • /
    • 2011
  • It can gain both the electric energy production and disperse of light at the same time if DSSC is applied in the building as window system. It means to help facade design and to be used in lighting, heating, cooling energy directly by applicating DSSC BIPV window that is possible to daylighting and materialization of color. For this, optical characteristics analysis that is basic step must take precedence. So, basic databases of DSSC are builded and optical performances according to the double and triple glazing are evaluated by analyzing spectral data of various colored DSSC. As a result, Green(4) has the highest visible transmittance that is 28.8%, and Blue(3) has the lowest that is 0.3%. And, in case of optical performance of Green(4) depending on the incidence angle, SHGC and Tsol are decreased sharply from more than $60^{\circ}C$. Finally, It is judged that Red(4), Green(1), (4), Blue(4) are suitable for application in office building because visible transmittance is high and solar heat gain coefficient is low relatively in spite of composing to double and triple glazing.

Study on Methane Steam Reforming utilizing Concentrated Solar Energy -Part 1. In search of the best reaction condition for steam reforming of methane- (태양열을 이용한 메탄의 수증기 개질 반응기 연구 -Part 1. 수증기 개질 반응에서의 최적 반응 조건 탐색-)

  • Kim, Ki-Man;Nam, Woo-Seok;Han, Gui-Young;Kang, Yong-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.4
    • /
    • pp.13-19
    • /
    • 2005
  • The reaction of steam reforming of methane with commercial catalysts was conducted for thermochemical heat storage. The reaction conditions were investigated for temperature range of 700 to $900\;^{\circ}C$ and steam to carbon mole ratios between 3.0 and 5.0. The reactor was made of stainless steel and it's dimension was 12 cm inside diameter and 6cm long. The effects of space velocity and reactants mole ratio and temperature on the methane conversion and CO selectivity were examined. Optimum reaction condition was determined. There was not a significant difference of methane conversion and CO selectivity compared to conventional reactor.

Development Trends and Perspectives of Organic Solar Cells (유기 태양전지 개발 동향 및 전망)

  • Kang, Moon-Sung;Kang, Yong Soo
    • Applied Chemistry for Engineering
    • /
    • v.16 no.2
    • /
    • pp.159-168
    • /
    • 2005
  • Dye-sensitized solar cells (DSCs) have been under investigation for the past decade due to their attractive features such as high energy conversion efficiency and low production costs. The basis for energy conversion is the injection of electrons from a photoexcited state of a dye sensitizer into the conduction band of the nanocrystalline $TiO_2$ semiconductor upon absorption of light. It is believed that the DSC is one of the most promising candidates for renewable energy sources. In this review, the development trends and perspectives of DSCs are investigated.

Status of Photovoltaics in the world (세계 태양광발전산업 현황)

  • Kang, Gi-Hwan;Lee, Chang-Koo;Park, Kyung-Eun;Kim, Hyun-Il;Yu, Kwon-Jong;Kim, Jun-Tae
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.314-319
    • /
    • 2009
  • The photovoltaic(PV) industry has been growing worldwide. Recently, the PV industries not also in the traditional PV advanced countries but also in other countries are rapidly growing. Especially, China has become the largest supplier in the world PV supply side since 2007. Both the world PV supply and demand rose steadily in 2008 like recent bumper years. In 2008, the world solar cell production reached 6.85GW~7.91GW presenting growth of 85% over the previous year. On the demand side, 81 countries contributed to the 5.95GW presenting growth of 110% over the previous year.

  • PDF

Probabilistic Production Cost Credit Evaluation of Wind Turbine Generators (풍력발전기의 확률론적 발전비용 절감기여도 평가)

  • Park, Jeong-Je;Wu, Liang;Choi, Jae-Seok;Cha, Jun-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2153-2160
    • /
    • 2008
  • This paper develops an algorithm for probabilistic production cost credit evaluation of wind turbine generators(WTG) with multi-state. Renewable energy resources such as wind, wave, solar, micro hydro, tidal and biomass etc. are becoming importance stage by stage because of considering effect of the environment. Wind energy is one of the most successful sources of renewable energy for the production of electrical energy. Case study demonstrates that the wind speed credit in view point of economics can be assessed by using the proposed methodology.

Equilibrium Conditions of Methane Hydrate added Help Gases (보조가스가 첨가된 메탄 하이드레이트 상평형 조건에 대한 연구)

  • Kim, Nam-Jin;Lim, Sang-Hoon;Chun, Won-Gee
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.4
    • /
    • pp.51-58
    • /
    • 2007
  • Gas hydrate is a special kind of inclusion compound that can be formed by capturing gas molecules to water lattice in high pressure and low temperature conditions. When referred to standard conditions, $1m^3$ solid hydrates contain up to $172Nm^3$ of methane gas, depending on the pressure and temperature of production. Such large volumes make natural gas hydrates can be used to store and transport natural gas. In this study, three-phase equilibrium conditions for forming methane hydrate were theoretically obtained in aqueous single electrolyte solution containing 3wt% NaCl. The results show that the predictions match the previous experimental values very well, and it was found that NaCl acts as an inhibitor.

Turbulence Intensity Effects on Small Wind Turbine Power Performance (난류강도가 소형 풍력발전기 출력에 미치는 영향)

  • Kim, Seokwoo
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.6
    • /
    • pp.19-25
    • /
    • 2013
  • Energy generation from an instrumented Skystream 3.7 small wind turbine was used to investigate the effect of ambient turbulence levels on wind turbine power output performance. It is widely known that elevated ambient turbulence level results in decreased energy production, especially for large sized wind turbine. However, over the entire wind speed range from cut in to the rated wind speed, the measured energy generation increased as ambient turbulence levels elevated. The impact degree of turbulence levels on power generation was reduced as measured wind speed approached to the rated wind speed of 13m/s.