Development Trends and Perspectives of Organic Solar Cells

유기 태양전지 개발 동향 및 전망

  • Kang, Moon-Sung (Center for Facilitated Transport Membranes, Korea Institute of Science and Technology (KIST)) ;
  • Kang, Yong Soo (Center for Facilitated Transport Membranes, Korea Institute of Science and Technology (KIST))
  • 강문성 (한국과학기술연구원 촉진수송분리막 연구단) ;
  • 강용수 (한국과학기술연구원 촉진수송분리막 연구단)
  • Received : 2005.03.03
  • Published : 2005.04.10

Abstract

Dye-sensitized solar cells (DSCs) have been under investigation for the past decade due to their attractive features such as high energy conversion efficiency and low production costs. The basis for energy conversion is the injection of electrons from a photoexcited state of a dye sensitizer into the conduction band of the nanocrystalline $TiO_2$ semiconductor upon absorption of light. It is believed that the DSC is one of the most promising candidates for renewable energy sources. In this review, the development trends and perspectives of DSCs are investigated.

염료감응 태양전지(dye-sensitized solar cells, DSCs)는 높은 광전효율과 값싼 제조비용의 매력을 가지고 있어 지난 10년간 활발히 연구되어왔다. 염료감응 태양전지의 에너지 전환은 광자를 흡수한 여기 상태 염료감응제의 나노결정 산화티타늄 반도체 전도대로의 전자 주입에 의해 발생된다. 이러한 염료감응 태양전지는 미래의 에너지 문제를 해결할 수 있는 유망한 청정재생 에너지원으로 기대된다. 본 총설에서는 염료감응 태양전지의 최근 개발 동향과 향후 전망에 대해 조사하였다.

Keywords

References

  1. B. O'Regan and M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal $TiO_{2}$ films, Nature, 353, 737 (1991) https://doi.org/10.1038/353737a0
  2. R. F. Service, Tricks for beating the heat help panels see the light, Science, 300, 1219 (2003) https://doi.org/10.1126/science.300.5623.1219
  3. http://www.nikkei.co.jp/rim/nano/business/v03/03.htm
  4. http://www.sta.com.au/download/DSC%20Solar%20Technology.pdf
  5. M. Gratzel, Mesoscopic solar cells for electricity and hydrogen production from sunlight, Chem. Lett., 34, 8 (2004)
  6. D. Gebeyehu, C. J. Brabec, N. S. Sariciftci, D. Vangeneugden, R. Kiebooms, D. Vanderzande, F. Kienberger, and H. Schindler, Hybrid solar cells based on dye-sensitized nanoporous $TiO_{2}$ electrodes and conjugated polymers as hole transport materials, Synt. Met., 125, 279 (2002) https://doi.org/10.1016/S0379-6779(01)00395-2
  7. M. Gratzel, Perspectives for dye-sensitized nanocrystalline solar cells, Prog. Photovolt. Res. Appl., 8, 171 (2000) https://doi.org/10.1002/(SICI)1099-159X(200001/02)8:1<171::AID-PIP300>3.0.CO;2-U
  8. U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, and M. Gratzel, Solid-state dye-sensitized mesoporous $TiO_{2}$ solar cells with high photon-to-electron conversion efficiencies, Nature, 395, 583 (1998) https://doi.org/10.1038/26936
  9. T. Kawashima, T. Ezure, K. Okada, H. Matsui, K. Goto, and N. Tanabe, FTO/ITO double-layered transparent conductive oxide for dye-sensitized solar cells, J. Photochem. Photobiol. A: Chem., 164, 199 (2004) https://doi.org/10.1016/j.jphotochem.2003.12.028
  10. J.-G. Doh, J. S. Hong, R. Vittal, M. G. Kang, N.-G. Park, and K.-J. Kim, Enhancement of photocurrent and photovoltage of dye-sensitized solar cells with $TiO_{2}$ film deposited on indium zinc oxide substrate, Chem. Mater., 16, 493 (2004) https://doi.org/10.1021/cm030542q
  11. M. Gratzel, Dye-sensitized solar cells, J. Photochem. Photobiol. C: Photochem. Rev., 4, 145 (2003) https://doi.org/10.1016/S1389-5567(03)00026-1
  12. S.-E. Lindquist, A. Hagfeldt, S. Sodergren, and H. Lindstrom, Electrochemistry of nanomaterials, ed. G. Hodes, 174, WlLEY- VCH, Weinheim (2001)
  13. L. Spanhel, H. Weller, and A. Henglein, Photochemistry of semiconductor colloids. 22. Electron injection from illuminated CdS into attached $TiO_{2}$ and ZnO particles, J. Am. Chem. Soc., 109, 6632 (1987) https://doi.org/10.1021/ja00256a012
  14. A. Hagfeldt and M. Gratzel, Light-induced redox reactions in nanocrystalline systems, Chem. Rev., 95, 49 (1995) https://doi.org/10.1021/cr00033a003
  15. A. Usami, Theoretical study of application of multiple scattering of light to a dye-sensitized nanocrystalline photoelectrochemical cell, Chem. Phys. Lett., 277, 105 (1997) https://doi.org/10.1016/S0009-2614(97)00878-6
  16. N.-G. Park, J. van de Lagemaat, and A. J. Frank, Comparison of dye-sensitized rutile- and anatase-based $TiO_{2}$ solar cells, J. Phys. Chem. B, 104, 8989 (2000) https://doi.org/10.1021/jp994365l
  17. Y. Tachibana, K. Hara, S. Takano, K. Sayama, and H. Arakawa, Investigations on anodic photocurrent loss processes in dye sensitized solar cells: comparison between nanocrystalline $SnO_{2}$ and $TiO_{2}$ films, Chem. Phys. Lett., 364, 297 (2002) https://doi.org/10.1016/S0009-2614(02)01310-6
  18. A. B. Kashyout, M. Soliman, M. El Gamal, and M. Fathy, Preparation and characterization of nano particles ZnO films for dye-sensitized solar cells, Mater. Chem. Phys., 90, 230 (2005) https://doi.org/10.1016/j.matchemphys.2004.11.031
  19. B. V. Bergeron, A. Marton, G. Oskam, and G. J. Meyer, Dye-sensitized $SnO_{2}$ electrodes with iodide and pseudohalide redox mediator, J. Phys. Chem. B, 109, 937 (2005) https://doi.org/10.1021/jp0461347
  20. P. Gao and M. A. Aegerter, Ru(II) sensitized $Nb_{2}O_{5}$ solar cell made by the sol-gel process, Thin Solid Films, 351, 290 (1999) https://doi.org/10.1016/S0040-6090(99)00215-1
  21. M. Gratzel, Photoelectrochemical cells, Nature, 414, 338 (2001) https://doi.org/10.1038/35104607
  22. M. Adachi, Y. Murata, J. Okada, and S. Yoshikawa, Formation of titania nanotubes and applications for dye-sensitized solar cells, J. Electrochem. Soc., 150, G488 (2003) https://doi.org/10.1149/1.1589763
  23. W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, Hybrid nanorod-polymer solar cells, Science, 295, 2425 (2002) https://doi.org/10.1126/science.1069156
  24. 스미토모 오사카 시멘트 테크니컬 리포트, 36 (2005) (http://www.socnb. com/report/ptech/2005p36.pdf)
  25. A. Zaban, S. G. Chen, S. Chappel, and B. A. Gregg, Bilayer nanoporous electrodes for dye sensitized solar cells, Chem. Commun., 2231 (2000)
  26. S. A. Haque, E. Palomares, H. M. Upadhyaya, L. Otley, R. J. Potter, A. B. Holmes, and J. R. Durrant, Flexible dye sensitised nanocrystalline semiconductor solar cells, Chem. Commun., 3008 (2003)
  27. E. Palomares, J. N. Clifford, S. A. Haque, T. Lutz, and J. R. Durrant, Slow charge recombination in dye-sensitised solar cells (DSSC) using $Al_{2}O_{3}$ coated nanoporous $TiO_{2}$, films, Chem. Commun., 1464 (2002)
  28. N.-G. Park, M. G. Kang, K. M. Kim, K. S. Ryu, S. H. Chang, D.-K. Kim, J. van de Langemaat, K. D. Benkstein, and A. J. Frank, Morphological and photoelectrochemical characterization of core-shell nanoparticle films for dye-sensitized solar cells: Zn-O type shell on $SnO_{2}$ and $TiO_{2}$ cores, Langmuir, 20, 4246 (2004) https://doi.org/10.1021/la036122x
  29. S.-S. Kim, J.-H. Yum, and Y.-E. Sung, Flexible dye-sensitized solar cells using ZnO coated $TiO_{2}$ nanoparticles, J. Photochem. Photobiol. A: Chem., 171, 273 (2005)
  30. P. Wang, C. Klein, R. Humphry-Baker, S. M. Zakeeruddin, and M. Gratzel, A high molar extinction coefficient sensitizer for stable dye-sensitized solar cells, J. Am. Chem. Soc., 127, 808 (2005) https://doi.org/10.1021/ja0436190
  31. P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, and M. Gratzel, A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte, Nature Mater., 2, 402 (2003) https://doi.org/10.1038/nmat904
  32. K. Hara, M. Kurashige, Y. Dan-oh, C. Kasada, A. Shinpo, S. Suga, and K. Sayama, H. Arakawa, Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells, New J. Chem., 27, 783 (2003) https://doi.org/10.1039/b300694h
  33. K. Hara, K. Sayama, Y. Ohga, A. Shinpo, S. Suga, and H. Arakawa, A coumarin-derivative dye sensitized nanocrystalline $TiO_{2}$ solar cell having a high solar-energy conversion efficiency upto 5.6%, Chem. Commun., 569 (2001)
  34. R. Plass, S. Pelet, J. Krueger, M. Gratzel, and U. Bach, Quantum dot sensitization of organic-inorganic hybrid solar cells, J. Phys. Chem. B, 106, 7578 (2002) https://doi.org/10.1021/jp020453l
  35. A. Kay and M. Gratzel, Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxdie and carbon powder, Sol. Energy Mater. Sol. Cells, 44, 99 (1996) https://doi.org/10.1016/0927-0248(96)00063-3
  36. A. Hauch and A. Georg, Diffusion in the electrolyte and chargetransfer reaction at the platinum electrode in dye-sensitized solar cells, Electrochim. Acta, 46, 3457 (2001) https://doi.org/10.1016/S0013-4686(01)00540-0
  37. S.-S. Kim, K.-W. Park, J.-H. Yum, and Y.-E. Sung, Method for fabricating Pt-MOX nanophase electrodes for highly efficient dye-sensitized solar cell, U. S. Patent, US20050016586A1 (2005)
  38. Y. Shibata, T. Kato, T. Kado, R. Shiratuchi, W. Takashima, K. Kaneto, and S. Hayase, Quasi-solid dye sensitized solar cells filled with ionic liquid-increase in efficiencies by specific interaction between conductive polymers and gelators, Chem. Commun., 2730 (2003)
  39. X. Fang, T. Ma, M. Akiyama, G. Guan, S. Tsunematsu, and E. Abe, Flexible counter electrodes based on metal sheet and polymer film for dye-sensitized solar cells, Thin Solid Films, 472, 242 (2005) https://doi.org/10.1016/j.tsf.2004.07.083
  40. A. F. Nogueira, J. R. Durrant, and M.-A. De Paoli, Dye-sensitized nanocrystalline solar cells employing a polymer electrolyte, Adv. Mater., 13, 826 (2001) https://doi.org/10.1002/1521-4095(200106)13:11<826::AID-ADMA826>3.0.CO;2-L
  41. T. Stergiopoulos, I. M. Arabatzis, G. Katsaros, and P. Falaras, Binary polyethylene oxide/titania solid-state redox electrolyte for highly efficient nanocrystalline $TiO_{2}$ photoelectrochemical cells, Nano Lett., 2, 1259 (2002) https://doi.org/10.1021/nl025798u
  42. J. H. Kim, M.-S. Kang, Y. J. Kim, J. Won, N.-G. Park, and Y. S. Kang, Dye-sensitized nanocrystalline solar cells based on composite polymer electrolytes containing fumed silica nanoparticles, Chem. Commun., 1662 (2004)
  43. M.-S. Kang, J. H. Kim, Y. J. Kim, J. Won, N.-G. Park, and Y. S. Kang, Dye-sensitized nanocrystalline $TiO_{2}$ solar cells employing solid-state composite polymer electrolytes, Chem. Commun., 889 (2005)
  44. J. H. Kim, M.-S. Kang, Y. J. Kim, J. Won, and Y. S. Kang, Poly(butyl acrylate)/NaI/$I_{2}$ electrolytes for dye-sensitized nano-crystalline $TiO_{2}$ solar cells, Solid State Ionics, 176, 579 (2005) https://doi.org/10.1016/j.ssi.2004.10.002
  45. Y. J. Kim, J. H. Kim, M.-S. Kang, M. J. Lee, J. Won, J. C. Lee, and Y. S. Kang, Supramolecular electrolytes for use in highly efficient dye-sensitized solar cells, Adv. Mater., 16, 1753 (2004) https://doi.org/10.1002/adma.200306664
  46. Q.-B. Meng, K. Takahashi, X.-T. Zhang, I. Sutanto, T. N. Rao, O. Sato, and A. Fujishima, Fabrication of an efficient solid-state dyesensitized solar cell, Langmuir, 19, 3572 (2003) https://doi.org/10.1021/la026832n