• Title/Summary/Keyword: solar concentration

Search Result 546, Processing Time 0.144 seconds

A Study on Properties of N-type ZnS Deposited at Various RF Power for Solar Cell Applications (RF Power에 따른 태양전지용 N-type ZnS 특성연구)

  • Yang, Hyeon-Hun;Kim, Han-Wool;Jeong, Woon-Jo;Lee, Suk-Ho;So, Soon-Youl;Park, Gye-Choon;Lee, Jin;Chung, Hea-Duck
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.7
    • /
    • pp.574-577
    • /
    • 2011
  • In this study, we use the $2.5cm{\times}7.5cm$ soda lime glass as the substrate. We used the ultrasonicator. Glass was dipped in the acetone, methanol and DI water respectively for 10 minutes. Ar(99.99%)gas was used as the sputtering gas. We varied the RF power between 100~175 W with 25 W steps. Base pressure was kept by turbo molecular pump at $3.0{\times}10^{-6}$ torr. Working pressure was kept by injection of Ar gas. ZnS thin films were deposited with the radio frequency magnetron sputtering technique at various temperatures and sputtering powers. It is also clearly observed that, the intensity of the (111) XRD peak increases with increasing the RF power. Electrical properties were measured by hall effect methods at room temperature. The resistivity, carrier concentration, and hall mobility of ZnS deposited on glass substrate as a function of sputtering power. It can be seen that as the sputtering power increase from 100 to 175 W, the resistivity of the films on glass decreased significantly from $8.1{\times}10^{-2}$ to $1.2{\times}10^{-3}\;{\Omega}{\cdot}cm$. This behavior could be explained by the effect of the sputtering power on the mobility and carrier concentration. When the RF power increases, the carrier concentration increases slightly while the resistivity decreases significantly. These variation originate from improved crystallinity and enhanced substitutional doping as the sputtering power increases.

A study on the surface characteristics of diamond wire-sawn silicon wafer for photovoltaic application (다이아몬드 코팅 와이어로 가공된 태양전지용 실리콘 웨이퍼의 표면 특성에 관한 연구)

  • Lee, Kyoung-Hee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.6
    • /
    • pp.225-229
    • /
    • 2011
  • Most of the silicon cutting methods using the multi-wire with the slurry injection have been used for wafers of the crystalline solar cell. But the productivity of slurry injection cutting type falls due to low cutting speeds. Also, the direct contact with the metal wire and silicon block increases the concentration of metallic impurities in the wafer's surface. In addition, the abrasive silicon carbide (SiC) generates pollutants. And production costs are rising because it does not re-use the worn wire. On the other hand, the productivity of the cutting method using the diamond coated wire is about 2 times faster than the slurry injection cutting type. Also, the continuous cutting using the used wire of low wear is possible. And this is a big advantage for reduced production costs. Therefore, the cutting method of the diamond coated wire is more efficient than the slurry injection cutting technique. In this study, each cutting type is analyzed using the surface characteristics of the solar wafer and will describe the effects of the manufacturing process of the solar cell. Finally, we will suggest improvement methods of the solar cell process for using the diamond cutting type wafer.

Back Surface Field Properties with Different Surface Conditions for Crystalline Silicon Solar Cells (후면 형상에 따른 결정질 실리콘 태양전지의 후면전계 형성 및 특성)

  • Kim, Hyun-Ho;Kim, Seong-Tak;Park, Sung-Eun;Song, Joo-Yong;Kim, Young-Do;Tark, Sung-Ju;Kwon, Soon-Woo;Yoon, Se-Wang;Son, Chang-Sik;Kim, Dong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.21 no.5
    • /
    • pp.243-249
    • /
    • 2011
  • To reduce manufacturing costs of crystalline silicon solar cells, silicon wafers have become thinner. In relation to this, the properties of the aluminium-back surface field (Al-BSF) are considered an important factor in solar cell performance. Generally, screen-printing and a rapid thermal process (RTP) are utilized together to form the Al-BSF. This study evaluates Al-BSF formation on a (111) textured back surface compared with a (100) flat back surface with variation of ramp up rates from 18 to $89^{\circ}C$/s for the RTP annealing conditions. To make different back surface morphologies, one side texturing using a silicon nitride film and double side texturing were carried out. After aluminium screen-printing, Al-BSF formed according to the RTP annealing conditions. A metal etching process in hydrochloric acid solution was carried out to assess the quality of Al-BSF. Saturation currents were calculated by using quasi-steady-state photoconductance. The surface morphologies observed by scanning electron microscopy and a non-contacting optical profiler. Also, sheet resistances and bulk carrier concentration were measured by a 4-point probe and hall measurement system. From the results, a faster ramp up during Al-BSF formation yielded better quality than a slower ramp up process due to temperature uniformity of silicon and the aluminium surface. Also, in the Al-BSF formation process, the (111) textured back surface is significantly affected by the ramp up rates compared with the (100) flat back surface.

Comparison of Quality Properties of Brined Baechu Cabbage Manufactured by Different Salting Methods and with Different Salts (절임 방법과 소금 종류를 달리하여 제조한 절임 배추의 품질특성 비교)

  • Choi, Geum-Hye;Lee, Ga-Yeung;Bong, Yeon-Ju;Jeong, Ji-Kang;Moon, Suk-Hee;Park, Kun-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.7
    • /
    • pp.1036-1041
    • /
    • 2014
  • This study compared quality changes among brined baechu cabbages manufactured by various salting methods and types of salt. Brine, brine and dry salting, and dry salting were used as salting methods. When baechu cabbages were salted by dry salting method, the salinity of brined baechu cabbage increased compared to salting by other methods, even though the quantity of salt used was small. In addition, salinities of leaf and stem were relatively equal among brined baechu cabbages using dry salting method compared to those of other methods. When baechu cabbages were salted using dry method at different salt concentrations (3%, 5%, and 10% of weight of baechu), brined baechu cabbage showed suitable salinity (1.41~1.42%) at 5% salt concentration. Among brined baechu cabbages prepared using dry salting method with different types of salt (purified salt, solar salt, and bamboo salt), bamboo salt produced the highest salinity. Brined baechu cabbages with solar salt and bamboo salt showed significantly lower counts of total aerobic bacteria and higher counts of lactic acid bacteria than others. These results indicate that baechu cabbage can be salted equally, and the amount of salt used can be reduced when baechu cabbage is salted using dry salting method. In addition, using solar salt and bamboo salt can increase the quality of brined baechu cabbage.

Increased in vitro Anticancer Effects of Potassium Bamboo Salt (칼륨죽염의 in vitro 항암 기능성 증진 효과)

  • Zhao, Xin;Jeong, Ji-Kang;Kim, So-Young;Park, Kun-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.9
    • /
    • pp.1248-1252
    • /
    • 2012
  • Potassium added with bamboo salt showed better antioxidative effects than bamboo salt, solar salt, or purified salt. It also showed inhibitory effects on the mutagenicity of MNNG (N-methyl-N-nitro-N-nitrosoguanidine) in a Salmonella Typhimurium TA100 tester strain. At concentrations of 1.25 and 2.5 mg/plate, potassium bamboo salt and bamboo salt showed weaker co-mutagenicity effects than either purified salt or solar salt, respectively. Anticancer effects of salts were evaluated using MTT assay in HCT-116 human colon carcinoma cells. At a 1% salt concentration, the growth inhibitory rate of potassium bamboo salt was 54%, higher than that of 1 time baked bamboo salt (36%). However, purified salt and solar salt showed relatively lower inhibitory effects of 19% and 23%, respectively. To determine the inhibitory mechanisms of potassium bamboo salt, the expression levels of Bax and Bcl-2 genes in HCT-116 cells were determined by RT-PCR. Potassium bamboo salt significantly increased Bax and decreased Bcl-2 expression levels unlike bamboo salt, purified salt, and solar salt (p<0.05). Therefore, addition of potassium to salt decreased co-mutagenicity and increased in vitro antioxidative and anticancer effects.

Potential of chemical rounding for the performance enhancement of pyramid textured p-type emitters and bifacial n-PERT Si cells

  • Song, Inseol;Lee, Hyunju;Lee, Sang-Won;Bae, Soohyun;Hyun, Ji Yeon;Kang, Yoonmook;Lee, Hae-Seok;Ohshita, Yoshio;Ogurad, Atsushi;Kim, Donghwan
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1268-1274
    • /
    • 2018
  • We have investigated the effects of chemical rounding (CR) on the surface passivation and/or antireflection performance of $AlO_{x^-}$ and $AlO_x/SiN_x:H$ stack-passivated pyramid textured $p^+$-emitters with two different boron doping concentrations, and on the performance of bifacial n-PERT Si solar cells with a front pyramid textured $p^+$-emitter. From experimental results, we found that chemical rounding markedly enhances the passivation performance of $AlO_x$ layers on pyramid textured $p^+$-emitters, and the level of performance enhancement strongly depends on boron doping concentration. Meanwhile, chemical rounding increases solar-weighted reflectance ($R_{SW}$) from ~2.5 to ~3.7% for the $AlO_x/SiN_x:H$ stack-passivated pyramid textured $p^+$-emitters after 200-sec chemical rounding. Consequently, compared to non-rounded bifacial n-PERT Si cells, the short circuit current density Jsc of 200-sec-rounded bifacial n-PERT Si cells with ~60 and ${\sim}100{\Omega}/sq$ $p^+$-emitters is reduced by 0.8 and $0.6mA/cm^2$, respectively under front $p^+$-emitter side illumination. However, the loss in the short circuit current density Jsc is fully offset by the increased fill factor FF by 0.8 and 1.5% for the 200-sec-rounded cells with ~60 and ${\im}100{\Omega}/sq$ $p^+$-emitters, respectively. In particular, the cell efficiency of the 200-sec-rounded cells with a ${\sim}100{\Omega}/sq$ $p^+$-emitter is enhanced as a result, compared to that of the non-rounded cells. Based on our results, it could be expected that the cell efficiency of bifacial n-PERT Si cells would be improved without additional complicated and costly processes if chemical rounding and boron doping processes can be properly optimized.

GOCI-IIVisible Radiometric Calibration Using Solar Radiance Observations and Sensor Stability Analysis (GOCI-II 태양광 보정시스템을 활용한 가시 채널 복사 보정 개선 및 센서 안정성 분석)

  • Minsang Kim;Myung-Sook Park;Jae-Hyun Ahn;Gm-Sil Kang
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1541-1551
    • /
    • 2023
  • Radiometric calibration is a fundamental step in ocean color remote sensing since the step to derive solar radiance spectrum in visible to near-infrared wavelengths from the sensor-observed electromagnetic signals. Generally, satellite sensor suffers from degradation over the mission period, which results in biases/uncertainties in radiometric calibration and the final ocean products such as water-leaving radiance, chlorophyll-a concentration, and colored dissolved organic matter. Therefore, the importance of radiometric calibration for the continuity of ocean color satellites has been emphasized internationally. This study introduces an approach to improve the radiometric calibration algorithm for the visible bands of the Geostationary Ocean Color Imager-II (GOCI-II) satellite with a focus on stability. Solar Diffuser (SD) measurements were employed as an on-orbit radiometric calibration reference, to obtain the continuous monitoring of absolute gain values. Time series analysis of GOCI-II absolute gains revealed seasonal variations depending on the azimuth angle, as well as long-term trends by possible sensor degradation effects. To resolve the complexities in gain variability, an azimuth angle correction model was developed to eliminate seasonal periodicity, and a sensor degradation correction model was applied to estimate nonlinear trends in the absolute gain parameters. The results demonstrate the effects of the azimuth angle correction and sensor degradation correction model on the spectrum of Top of Atmosphere (TOA) radiance, confirming the capability for improving the long-term stability of GOCI-II data.

The Assessing the HVAC system and Measurements of Indoor Air Quality of Highway Bus (차량용 공조시스템의 현황 및 고속버스의 실내 공기 환경 측정)

  • Yoo, Ho-Chun;Noh, Kyoung Hwan
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.263-268
    • /
    • 2009
  • The current focus of domestic car industry is moving from technological development to reducing greenhouse gas. This study investigates and measures the HVAC system and indoor air condition of highway buses, which is conducted to develop a HVAC system using natural energy in the future. The measurements show that thermal balance is not fulfilled because heating sources are randomly placed, and relative humidity is in the 20 percent range both in HVAC and non-HVAC systems, which is far below 40%, or the highest thermal comfort level. CO2 concentration was found to be an average of 1500 ppm, but not more than 2522 ppm with 15 persons on board, and with 29 persons on board, an average of 2053 ppm, but not more than 3066 ppm, both of which far exceed allowed CO2 concentration level, or 1000 ppm. Generally, highway buses drop by rest stops and open doors for 15 to 20 minutes for getting in fresh air. But its air improvement effect is temporary, and it exacerbates indoor air condition.

  • PDF

RECENT DEVELOPMENTS OF MEMBRANE TECHNOLOGY IN JAPAN

  • Kimura, Shoji
    • Membrane Journal
    • /
    • v.1 no.1
    • /
    • pp.5-12
    • /
    • 1991
  • Since the discovery of the Loeb-Sourirajan reverse osmosis membrane, thirty years have passed and many membrane technologies and new membranes for applications have been developed in the world. In the early stage of these developments Japan has not contributed much, but from the middle of 70ties Japan has started its own R&D projects starting from the desalination technology, and now various private industries and government ministries are actively engaging in R & D of membrane technologies in Japan. In Table 1 the chronological developments of important events of developments and projects relating membrane technologies inside and outside of Japan are introduced and their details will be explained. The first membrane technology applied in the Japanese industry was a electrodialysis(ED) process using ion-exchange membranes. These membranes were first developed in early 50ties and the Japanese government decided to use this method for concentration of sea-water to produce salt, which was then produced by solar evaporation. This development program started from 1960 by the Japan Monopoly Corp.(at that time). To apply ED process for sea-water concentration it was necessary to develop ion-exchange membranes having very low electric resistance to avoid energy loss due to Joule heat, and those having selectivity to permeate single valent ions only to avoid scale formation in the ED stacks. Three Japanese companies, Asahi Glass, Asahi Chemical and Tokuyama Soda, have succeeded to develop such membranes, and until 1971 all of the seven salt manufacturing companies had adopted ED for production of food salt.

  • PDF

Effect of H2S Concentration and Sulfurization Temperature on the Properties of Cu2ZnSnS4 Thin Films

  • Arepalli, Vinaya Kumar;Kim, Eui-Tae
    • Korean Journal of Materials Research
    • /
    • v.25 no.12
    • /
    • pp.708-712
    • /
    • 2015
  • This study reports the effects of $H_2S$ gas concentration on the properties of $Cu_2ZnSnS_4(CZTS)$ thin films. Specifically, sulfurization process with low $H_2S$ concentrations of 0.05% and 0.1%, along with 5% $H_2S$ gas, was studied. CZTS films were directly synthesized on Mo/Si substrates by chemical bath deposition method using copper sulfate, zinc sulfate heptahydrate, tin chloride dihydrate, and sodium thiosulfate pentahydrate. Smooth CZTS films were grown on substrates at optimized chemical bath deposition condition. The CZTS films sulfurized at low $H_2S$ concentrations of 0.05 % and 0.1% showed very rough and porous film morphology, whereas the film sulfurized at 5% $H_2S$ yielded a very smooth and dense film morphology. The CZTS films were fully crystallized in kesterite crystal form when they were sulfurized at $500^{\circ}C$ for 1 h. The kesterite CZTS film showed a reasonably good room-temperature photoluminescence spectrum that peaked in a range of 1.4 eV to 1.5 eV, consistent with the optimal bandgap for CZTS solar cell applications.