• Title/Summary/Keyword: solar:corona

Search Result 86, Processing Time 0.023 seconds

THE SOLAR-B MISSION

  • ICHIMOTO KIYOSHI;TEAM THE SOLAR-B
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.307-310
    • /
    • 2005
  • The Solar-B is the third Japanese spacecraft dedicated for solar physics to be launched in summer of 2006. The spacecraft carries a coordinated set of optical, EUV and X-ray instruments that will allow a systematic study of the interaction between the Sun's magnetic field and its high temperature, ionized atmosphere. The Solar Optical Telescope (SOT) consists of a 50cm aperture diffraction limited Gregorian telescope and a focal plane package, and provides quantitative measurements of full vector magnetic fields at the photosphere with spatial resolution of 0.2-0.3 arcsec in a condition free from terrestrial atmospheric seeing. The X-ray telescope (XRT) images the high temperature (0.5 to 10 MK) corona with improved spatial resolution of approximately 1 arcsec. The Extreme Ultraviolet Imaging Spectrometer (EIS) aims to determine velocity fields and other plasma parameters in the corona and the transition region. The Solar-B telescopes, as a whole, will enable us to explore the origins of the outer solar atmosphere, the corona, and the coupling between the fine magnetic structure at the photosphere and the dynamic processes occurring in the corona. The mission instruments (SOT/EIS/XRT) are joint effort of Japan (JAXA/NAO), the United States (NASA), and the United Kingdom (PPARC). An overview of the spacecraft and its mission instruments are presented.

A SCANNING CCD DETECTOR FOR SOLAR ECLIPSE OBSERVATIONS

  • YERSHOV V. N.
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.385-386
    • /
    • 1996
  • A wide-field CCD detector for solar eclipse observations is discussed. The CCD is supposed to be of a moderate size, and the image of the corona is obtained by scanning the field of view. Results of the 1995 solar eclipse observation are shown which have been made with a prototype of the scanning CCD detector.

  • PDF

An Automatic Corona-discharge Detection System for Railways Based on Solar-blind Ultraviolet Detection

  • Li, Jiaqi;Zhou, Yue;Yi, Xiangyu;Zhang, Mingchao;Chen, Xue;Cui, Muhan;Yan, Feng
    • Current Optics and Photonics
    • /
    • v.1 no.3
    • /
    • pp.196-202
    • /
    • 2017
  • Corona discharge is always a sign of failure processes of high-voltage electrical apparatus, including those utilized in electric railway systems. Solar-blind ultraviolet (UV) cameras are effective tools for corona inspection. In this work, we present an automatic railway corona-discharge detection system based on solar-blind ultraviolet detection. The UV camera, mounted on top of a train, inspects the electrical apparatus, including transmission lines and insulators, along the railway during fast cruising of the train. An algorithm based on the Hough transform is proposed for distinguishing the emitting objects (corona discharge) from the noise. The detection system can report the suspected corona discharge in real time during fast cruises. An experiment was carried out during a routine inspection of railway apparatus in Xinjiang Province, China. Several corona-discharge points were found along the railway. The false-alarm rate was controlled to less than one time per hour during this inspection.

NUMERICAL CALCULATION OF TWO FLUID SOLAR WIND MODEL

  • KIM S.-J.;KIM K.-S.;MOON Y.-J.;CRO K.-S.;PARK Y. D.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.55-59
    • /
    • 2004
  • We have developed a two fluid solar wind model from the Sun to 1 AU. Its basic equations are mass, momentum and energy conservations. In these equations, we include a wave mechanism of heating the corona and accelerating the wind. The two fluid model takes into account the power spectrum of Alfvenic wave fluctuation. Model computations have been made to fit observational constraints such as electron($T_e$) and proton($T_p$) temperatures and solar wind speed(V) at 1 AU. As a result, we obtained physical quantities of solar wind as follows: $T_e$ is $7.4{\times}10^5$ K and density(n) is $1.7 {\times}10^7\;cm^{-3}$ in the corona. At 1 AU $T_e$ is $2.1 {\times} 10^5$ K and n is $0.3 cm^{-3}$, and V is $511 km\;s^{-1}$. Our model well explains the heating of protons in the corona and the acceleration of the solar wind.

NON-HYDROSTATIC SUPPORT OF PLASMA IN THE SOLAR CHROMOSPHERE AND CORONA

  • Chae, Jong-Chul
    • Journal of The Korean Astronomical Society
    • /
    • v.43 no.3
    • /
    • pp.55-64
    • /
    • 2010
  • We investigate how plasma structures in the solar chromosphere and corona can extend to altitudes much above hydrostatic scale heights from the solar surface even under the force of gravity. Using a simple modified form of equation of motion in the vertical direction, we argue that there are two extreme ways of non-hydrostatic support: dynamical support and magnetic support. If the vertical acceleration is downward and its magnitude is a significant fraction of gravitational acceleration, non-hydrostatic support is dynamical in nature. Otherwise non-hydrostatic support is static, and magnetic support by horizontal magnetic fields is the only other possibility. We describe what kind of observations are needed in the clarification of the nature of non-hydrostatic support. Observations available so far seem to indicate that spicules in the quiet regions and dynamic fibrils in active regions are dynamically supported whereas the general chromosphere as well as prorninences is magnetically supported. Moreover, it appears that magnetic support is required for plasma in some coronal loops as well. We suspect that the identification of a coronal loop with a simple magnetic flux tube might be wrong in this regard.

TOWARD A NEXT GENERATION SOLAR CORONAGRAPH: DEVELOPMENT OF A COMPACT DIAGNOSTIC CORONAGRAPH FOR THE ISS

  • Cho, K.S.;Bong, S.C.;Choi, S.;Yang, H.;Kim, J.;Baek, J.H.;Park, J.;Lim, E.K.;Kim, R.S.;Kim, S.;Kim, Y.H.;Park, Y.D.;Clarke, S.W.;Davila, J.M.;Gopalswamy, N.;Nakariakov, V.M.;Li, B.;Pinto, R.F.
    • Journal of The Korean Astronomical Society
    • /
    • v.50 no.5
    • /
    • pp.139-149
    • /
    • 2017
  • The Korea Astronomy and Space Science Institute plans to develop a coronagraph in collaboration with National Aeronautics and Space Administration (NASA) and to install it on the International Space Station (ISS). The coronagraph is an externally occulted one-stage coronagraph with a field of view from 3 to 15 solar radii. The observation wavelength is approximately 400 nm, where strong Fraunhofer absorption lines from the photosphere experience thermal broadening and Doppler shift through scattering by coronal electrons. Photometric filter observations around this band enable the estimation of 2D electron temperature and electron velocity distribution in the corona. Together with a high time cadence (<12 min) of corona images used to determine the geometric and kinematic parameters of coronal mass ejections, the coronagraph will yield the spatial distribution of electron density by measuring the polarized brightness. For the purpose of technical demonstration, we intend to observe the total solar eclipse in August 2017 with the filter system and to perform a stratospheric balloon experiment in 2019 with the engineering model of the coronagraph. The coronagraph is planned to be installed on the ISS in 2021 for addressing a number of questions (e.g., coronal heating and solar wind acceleration) that are both fundamental and practically important in the physics of the solar corona and of the heliosphere.

CME propagation and proton acceleration in solar corona

  • Kim, Roksoon;Kwon, Ryunyoung;Lee, Jaeok;Lario, David
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.53.3-54
    • /
    • 2018
  • Solar Proton Events (SPEs) are the energetic phenomena related particle acceleration occurred in solar corona. Conventionally, they have been classified into two groups as the impulsive and gradual cases caused by reconnection in the flaring site and by shock generated by CME, respectively. In the previous studies, we classified these into four groups by analyzing the proton acceleration patterns in multi-energy channel observation. This showed that acceleration due to the magnetic reconnection may occur in the corona region relatively higher than the flaring site. In this study, we analyzes 54 SPEs observed in the energy band over 25 MeV from 2009 to 2013, where STEREO observations as well as SOHO can be utilized. From the multi-positional observation, we determine the exact time at which the Sun-Earth magnetic field line meets the CME shock structure by considering 3-dimensional structure of CME. Also, we determine the path length by considering the solar wind velocity for each event, so that the SPE onset time near the sun is obtained more accurately. Based on this study, we can get a more understanding of the correlation between CME progression and proton acceleration in the solar coronal region.

  • PDF

Magnetic Field Strength in the Upper Solar Corona Using White-light Shock Structures Surrounding Coronal Mass Ejections

  • Kim, Roksoon;Gopalswamy, Nat;Moon, Yongjae;Cho, Kyungsuk;Yashiro, Seiji
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.114.1-114.1
    • /
    • 2012
  • To measure the magnetic field strength in the solar corona, we examined 10 fast (>1000 km/s) limb coronal mass ejections (CMEs) that show clear shock structures in Solar and Heliospheric Observatory/Large Angle and Spectrometric Coronagraph images. By applying the piston-shock relationship to the observed CME's standoff distance and electron density compression ratio, we estimated the Mach number, Alfven speed, and magnetic field strength in the height range 3-15 solar radii (Rs). The main results from this study are as follows: (1) the standoff distance observed in the solar corona is consistent with those from a magnetohydrodynamic model and near-Earth observations; (2) the Mach number as a shock strength is in the range 1.49-3.43 from the standoff distance ratio, but when we use the density compression ratio, the Mach number is in the range 1.47-1.90, implying that the measured density compression ratio is likely to be underestimated owing to observational limits; (3) the Alfven speed ranges from 259 to 982 km/s and the magnetic field strength is in the range 6-105 mG when the standoff distance is used; (4) if we multiply the density compression ratio by a factor of two, the Alfven speeds and the magnetic field strengths are consistent in both methods; and (5) the magnetic field strengths derived from the shock parameters are similar to those of empirical models and previous estimates.

  • PDF

Analysis of Image and Development of UV Corona Camera for High-Voltage Discharge Detection (고전압 방전 검출용 자외선 코로나 카메라 개발 및 방전 이미지 분석)

  • Kim, Young-Seok;Shong, Kil-Mok;Bang, Sun-Bae;Kim, Chong-Min;Choi, Myeong-Il
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.9
    • /
    • pp.69-74
    • /
    • 2011
  • In this paper, the UV corona camera was developed using the solar blind and Multi Channel Plate(MCP) technology for the target localization of UV image. UV camera developed a $6.4[^{\circ}]{\times}4.8[^{\circ}]$ of the field of view as a conventional camera to diagnose a wide range of slightly enlarged, and power equipment to measure the distance between the camera and the distance meter has been attached. UV camera to measure the discharge count and the UV image was developed, compared with a commercial camera, there was no significant difference. In salt spray environments breakdown voltage was lower than the normal state, thereby discharging the image was rapidly growing phenomenon.

Improvement of Corona Temperature and Velocity Determination Method Using a Coronagraph Filter System

  • Cho, Kyuhyoun;Chae, Jongchul;Lim, Eun-Kyung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.85.3-86
    • /
    • 2017
  • We have developed a methodology to determine the coronal electron temperature and solar wind speed using a four filter coronagraph system. The method developed so far have been applied to total eclipse observation and have yielded plausible results. The current methodology starts from the assumption that 1) coronal free electrons are isothermal and 2) coronal free electrons have spherically symmetric distrubution. However, the actual solar corona differs significantly from the two assumptions above. The coronal electron density is not spherically symmetric due to streamers, plumes, and coronal loops, and the electron temperature is also expected to increase rapidly with distance from the sun. We will discuss how to determine the temperature and wind speed of the corona in the case of corona with thermal structures and non-spherical symmetric electron density.

  • PDF