Browse > Article
http://dx.doi.org/10.5303/JKAS.2017.50.5.139

TOWARD A NEXT GENERATION SOLAR CORONAGRAPH: DEVELOPMENT OF A COMPACT DIAGNOSTIC CORONAGRAPH FOR THE ISS  

Cho, K.S. (Korea Astronomy and Space Science Institute)
Bong, S.C. (Korea Astronomy and Space Science Institute)
Choi, S. (Korea Astronomy and Space Science Institute)
Yang, H. (Korea Astronomy and Space Science Institute)
Kim, J. (Korea Astronomy and Space Science Institute)
Baek, J.H. (Korea Astronomy and Space Science Institute)
Park, J. (Korea Astronomy and Space Science Institute)
Lim, E.K. (Korea Astronomy and Space Science Institute)
Kim, R.S. (Korea Astronomy and Space Science Institute)
Kim, S. (Korea Astronomy and Space Science Institute)
Kim, Y.H. (Korea Astronomy and Space Science Institute)
Park, Y.D. (Korea Astronomy and Space Science Institute)
Clarke, S.W. (NASA Headquarters)
Davila, J.M. (NASA Goddard Space Flight Center)
Gopalswamy, N. (NASA Goddard Space Flight Center)
Nakariakov, V.M. (University of Warwick)
Li, B. (Sandong University)
Pinto, R.F. (Universite de Toulouse, UPS-OMP, IRAP)
Publication Information
Journal of The Korean Astronomical Society / v.50, no.5, 2017 , pp. 139-149 More about this Journal
Abstract
The Korea Astronomy and Space Science Institute plans to develop a coronagraph in collaboration with National Aeronautics and Space Administration (NASA) and to install it on the International Space Station (ISS). The coronagraph is an externally occulted one-stage coronagraph with a field of view from 3 to 15 solar radii. The observation wavelength is approximately 400 nm, where strong Fraunhofer absorption lines from the photosphere experience thermal broadening and Doppler shift through scattering by coronal electrons. Photometric filter observations around this band enable the estimation of 2D electron temperature and electron velocity distribution in the corona. Together with a high time cadence (<12 min) of corona images used to determine the geometric and kinematic parameters of coronal mass ejections, the coronagraph will yield the spatial distribution of electron density by measuring the polarized brightness. For the purpose of technical demonstration, we intend to observe the total solar eclipse in August 2017 with the filter system and to perform a stratospheric balloon experiment in 2019 with the engineering model of the coronagraph. The coronagraph is planned to be installed on the ISS in 2021 for addressing a number of questions (e.g., coronal heating and solar wind acceleration) that are both fundamental and practically important in the physics of the solar corona and of the heliosphere.
Keywords
instrumentation: coronagraph; Sun: corona; solar wind; acceleration of particles; space vehicles: International Space Station;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Kwon, R.-Y., Ofman, L., Olmedo, O., Kramar, M., Davila, J. M., Thompson, B. J., & Cho, K.-S. 2013, STEREO Observations of Fast Magnetosonic Waves in the Extended Solar Corona Associated with EIT/EUV Waves, A&A, 766, 55
2 Landini, F., Vives, S., Romoli, M., et al. 2012, Optimization of the Occulter for the Solar Orbiter/METIS Coronagraph, SPIE, 8442, 844227
3 Landini, F., Romoli, M., Capobianco, G., et al. 2013, Improved Stray Light Suppression Performance for the Solar Orbiter/METIS Inverted External Occulter, SPIE, 8862, 886204
4 Lee, H., Moon, Y.-J., & Nakariakov, V. M. 2015, Radial and Azimuthal Oscillations of Halo Coronal Mass Ejections in the Sun, ApJL, 803, L7   DOI
5 Li, B., Xia, L. D., & Chen, Y. 2011, Solar Winds along Curved Magnetic Field Lines, A&A, 529, A148   DOI
6 Lionello, R., Linker, J. A., & Mikic, Z. 2001, Including the Transition Region in Models of the Large-Scale Solar Corona, ApJ, 546, 542   DOI
7 Liu, W., Title, A. M., Zhao, J., Ofman, L., Schrijver, C. J., Aschwanden, M. J., De Pontieu, B., & Tarbell, T. D. 2011, Direct Imaging of Quasi-Periodic Fast Propagating Waves of -2000 km $s^{-1}$ in the Low Solar Corona by the Solar Dynamics Observatory Atmospheric Imaging Assembly, ApJL, 736, L13   DOI
8 Michalek, G., Shanmugaraju, A., Gopalswamy, N., Yashiro, S., & Akiyama, S. 2016, Statistical Analysis of Periodic Oscillations in LASCO Coronal Mass Ejection Speeds, Sol. Phys., 291, 3751   DOI
9 November, L. J., & Koutchmy, S. 1996, White-Light Coronal Dark Threads and Density Fine Structure, ApJ, 466, 512   DOI
10 Pinto, R. F., & Rouillard, A. P. 2017, A Multiple Flux-tube Solar Wind Model, ApJ, 838, 89   DOI
11 Ofman, L., Romoli, M., Poletto, G., Noci, G., & Kohl, J. L. 1997, Ultraviolet Coronagraph Spectrometer Observations of Density Fluctuations in the Solar Wind, ApJL, 491, L111   DOI
12 Abbo, L., Ofman, L., Antiochos, S. K., Hansteen, V. H., Harra, L., Ko, Y.-K., Lapenta, G., Li, B., Riley, P., Strachan, L., von Steiger, R., &Wang, Y.-M. 2016, Slow Solar Wind: Observations and Modeling, Space Sci. Rev., 201, 55   DOI
13 Alfven, H. 1947, Granulation, Magneto-Hydrodynamic Waves, and the Heating of the Solar Corona, MNRAS, 107, 211   DOI
14 Plotnikov, I., Rouillard, A. P., Davies, J. A., et al. 2016, Long-Term Tracking of Corotating Density Structures Using Heliospheric Imaging, Sol. Phys., 291, 1853   DOI
15 Rougeot, R., Flamary, R., Galano, D., & Aime, C. 2017, Performance of the Hybrid Externally Occulted Lyot Solar Coronagraph. Application to ASPIICS, A&A, 599, A2   DOI
16 Nakariakov, V. M., Ofman, L., & Arber, T. D. 2000, Nonlinear Dissipative Spherical Alfven Waves in Solar Coronal Holes, A&A, 353, 741
17 Parker, E. N. 1958, Dynamics of the Interplanetary Gas and Magnetic Fields, ApJ, 128, 664   DOI
18 Pascoe, D. J., Nakariakov, V. M., & Kupriyanova, E. G. 2013, Fast Magnetoacoustic Wave Trains in Magnetic Funnels of the Solar Corona, A&A, 560, A97   DOI
19 Purcell, J. D., & Koomen, M. J. 1962, Coronagraph with Improved Scattered-Light Properties, Report of NRL Progress (Washington, D.C.: U.S. GPO)
20 Reginald, N. 2001, MACS, an Instrument, and a Methodology for Simultaneous and Global Measurements of the Coronal Electron Temperature and the Solar Wind Velocity on the Solar Corona, PhD Thesis, University of Delaware, Source DAI-B 61/12, 6516
21 Richardson, J. D., & Kasper, J. C. 2008, Solar Cycle Variations of Solar Wind Dynamics and Structures, J. Atmos. Solar-Terrestrial Phys., 70, 219   DOI
22 Rotter, T., Veronig, A. M., Temmer, M., & Vrsnak, B. 2012, Relation Between Coronal Hole Areas on the Sun and the Solar Wind Parameters at 1 AU, Sol. Phys., 281, 793   DOI
23 Thernisien, A. F. R., Howard, R. A., & Vourlidas, A. 2006, Modeling of Flux Rope Coronal Mass Ejections, ApJ, 652, 763   DOI
24 Baumbach, S. 1937, Strahlung, Ergiebigkeit und Elektronendichte der Sonnenkorona, AN, 263, 120
25 Bout, M., Lamy, P., Maucherat, A., Colin, C., & Llebaria, A. 2000, Experimental Study of External Occulters for the Large Angle and Spectrometric Coronagraph 2: LASCO-C2, Appl. Opt., 39, 3955   DOI
26 Breitling, F., Mann, G., Vocks, C., Steinmetz, M., & Strassmeier, K. G. 2015, The LOFAR Solar Imaging Pipeline and the LOFAR Solar Data Center, Astronomy and Computing, 13, 99   DOI
27 Cho, K., Chae, J., Lim, E.-K., Cho, K.-S., Bong, S.-C., & Yang, H. 2016, A New Method to Determine Temperature of CMES Using a Coronagraph Filter System, JKAS, 49, 45
28 Cram, L. E. 1976, Determination of the Temperature of the Solar Corona from the Spectrum of the Electron-Scattering Continuum, Sol. Phys., 48, 3   DOI
29 Cranmer, S. R. 2002, Coronal Holes and the High-Speed Solar Wind, Space Sci. Rev., 101, 229   DOI
30 Cranmer, S. R. 2009, Coronal Holes, Living Rev. Sol. Phys., 6, 3
31 Cranmer, S. R., & van Ballegooijen, A. A. 2005, On the Generation, Propagation, and Reflection of Alfven Waves from the Solar Photosphere to the Distant, ApJS, 156, 265   DOI
32 Cranmer, S. R., van Ballegooijen, A. A., & Edgar, R. J. 2007, Self-Consistent Coronal Heating and Solar Wind Acceleration from Anisotropic Magnetohydrodynamic Turbulence, ApJS, 171, 520   DOI
33 van der Holst, B., Sokolov, I. V., Meng, X., Jin, M., Manchester, W. B. IV, Toth, G., & Gombosi, T. I. 2014, Alfven Wave Solar Model (AWSoM): Coronal Heating, ApJ, 782, 81.   DOI
34 Fu, H., Li, B., Li, X., Huang, Z., Mou, C., Jiao, F., & Xia, L. 2015, Coronal Sources and In Situ Properties of the Solar Winds Sampled by ACE During 1999 - 2008, Sol. Phys., 290, 1399   DOI
35 Fujiki, K., Tokumaru, M., Iju, T., Hakamada, K., & Kojima, M. 2015, Relationship Between Solar-Wind Speed and Coronal Magnetic-Field Properties, Sol. Phys., 290, 2491   DOI
36 Tokumaru, M., Kojima, M., & Fujiki, K. 2010, Solar Cycle Evolution of the Solar Wind Speed Distribution from 1985 to 2008, JGR, 115, A04102
37 Wang, Y. M., Sheeley, N. R., Socker, D. G., Howard, R. A., & Rich, N. B. 2000, The Dynamical Nature of Coronal Streamers, J. Geophys. Res., 105, 25133   DOI
38 Wang, Y.-M., & Sheeley, N. R. Jr. 1990, Solar Wind Speed and Coronal Flux-Tube Expansion, ApJ, 355, 726   DOI
39 Yang, L. P., Feng, X. S., He, J. S., Zhang, L., & Zhang, M. 2016, A Self-Consistent Numerical Study of the Global Solar Wind Driven by the Unified Nonlinear Alfven Wave, Sol. Phys., 291, 953   DOI
40 Yashiro, S., Gopalswamy, N., Michalek, G., St. Cyr, O. C., Plunkett, S. P., Rich, N. B., & Howard, R. A. 2004, A Catalog of White Light Coronal Mass Ejections Observed by the SOHO Spacecraft, J. Geophys. Res., 109, A07105
41 Goddard, C. R., Nistico, G., Nakariakov, V. M., Zimovets, I. V., & White, S. M. 2016, Observation of Quasi-Periodic Solar Radio Bursts Associated with Propagating Fast-Mode Waves, A&A, 594, A96   DOI
42 Gong, Q., & Socker, D. 2004, Theoretical Study of the Occulted Solar Coronagraph, SPIE, 5526, 208
43 Hayes, A. P., Vourlidas, A., & Howard, R. A. 2001, Deriving the Electron Density of the Solar Corona from the Inversion of Total Brightness Measurements, ApJ, 548, 1081   DOI
44 Grail, R. R., Coles, W. A., Klinglesmith, M. T., Breen, A. R., Williams, P. J. S., Markkanen, J., & Esser, R. 1996, Rapid Acceleration of the Polar Solar Wind, Nature, 379, 429   DOI
45 Gressl, C., Veronig, A. M., Temmer, M., Odstrcil, D., Linker, J. A., Mikic, Z., & Riley, P. 2014, Comparative Study of MHD Modeling of the Background Solar Wind, Sol. Phys., 289, 1783   DOI
46 Hassler, D. M., Dammasch, I. E., Lemaire, P., Brekke, P., Curdt, W., Mason, H. E., Vial, J.-C., & Wilhelm, K. 1999, Solar Wind Outflow and the Chromospheric Magnetic Network, Science, 283, 810   DOI
47 Howard, R. A., Sheeley, N. R. Jr., Michels, D. J., & Koomen, M. J. 1985, Coronal Mass Ejections - 1979-1981, J. Geophys. Res., 90, 8173   DOI
48 Illing, R. M. E., & Hundhausen, A. J. 1985, Observation of a Coronal Transient from 1.2 to 6 Solar Radii, J. Geophys. Res., 90, 275   DOI
49 Kohl, J. L., Noci, G., Antonucci, E., et al. 1998, UVCS/SOHO Empirical Determinations of Anisotropic Velocity Distributions in the Solar Corona, ApJ, 501, L127   DOI
50 Koutchmy, S. 1988, Space-Borne Coronagraphy, SSRv, 47, 95
51 Kurucz, R. L. 2005, New Atlases for Solar Flux, Irradiance, Central Intensity, and Limb Intensity, Memorie della Societa Astronomica Italiana Supplement, 8, 189