DOI QR코드

DOI QR Code

NUMERICAL CALCULATION OF TWO FLUID SOLAR WIND MODEL

  • KIM S.-J. (Korea Astronomy Observatory, Department of Astronomy & Space Science, Kyunghee University) ;
  • KIM K.-S. (Department of Astronomy & Space Science, Kyunghee University) ;
  • MOON Y.-J. (Korea Astronomy Observatory) ;
  • CRO K.-S. (Korea Astronomy Observatory) ;
  • PARK Y. D. (Korea Astronomy Observatory, Big Bear Solar Observatory, NJIT)
  • Published : 2004.03.01

Abstract

We have developed a two fluid solar wind model from the Sun to 1 AU. Its basic equations are mass, momentum and energy conservations. In these equations, we include a wave mechanism of heating the corona and accelerating the wind. The two fluid model takes into account the power spectrum of Alfvenic wave fluctuation. Model computations have been made to fit observational constraints such as electron($T_e$) and proton($T_p$) temperatures and solar wind speed(V) at 1 AU. As a result, we obtained physical quantities of solar wind as follows: $T_e$ is $7.4{\times}10^5$ K and density(n) is $1.7 {\times}10^7\;cm^{-3}$ in the corona. At 1 AU $T_e$ is $2.1 {\times} 10^5$ K and n is $0.3 cm^{-3}$, and V is $511 km\;s^{-1}$. Our model well explains the heating of protons in the corona and the acceleration of the solar wind.

Keywords

References

  1. Geophys. Res. Letters v.22 Coronal heating and plasma parameters at 1AU Esser,R.;Habbal,S.R. https://doi.org/10.1029/95GL02339
  2. Geophys. Res. Letters v.22 Flow properties of the solar wind derived from a two-fluid model with constraints from white light and in situ interplanetary observations Habbal,S.R.;Esser,R.;Guhathakurta,M.;Fisher,R.R. https://doi.org/10.1029/95GL01064
  3. ApJ v.151 Two-Fluid Model of the Solar Wind, Hartle,R.E.;Esturrock,P.A. https://doi.org/10.1086/149414
  4. J. Geophys. Res. v.104 On the cascade processes of Alfven waves in the fast solar wind Hu,Y.Q;Habbal,S.R;Li,X. https://doi.org/10.1029/1999JA900340
  5. Master Thesis Dapartment of Astronomy and Space Science Kim,S.J.
  6. Sol. Phys. v.49 Dynamics of Coronal Hole Regions Kopp,R.A;Holzer,T.E.
  7. J. Geophys. Res. v.87 Wave heating and acceleration of solar wind ions by cyclotron resonance Marsch,E.;Goertz,C.K;Richter,K. https://doi.org/10.1029/JA087iA07p05030
  8. Proceedings of the 3rd COSPAR Colloquium On the possible role of plasma waves in the heating of chromosphere and corona, Solar Wind Seven Marsch,E.
  9. Sci. Rev. v.87 Working group 4 report : Composition and elemental abundance variation in the solar atmosphere and solar wing, Space Mason,H.E;Bochsler,P. https://doi.org/10.1023/A:1005118217863
  10. J. Geophys. Res. v.105 Solar wind observations over Ulysses first full polar orbit McComas,D.J.;Barrclough,B.L.;Funsten,H.O.;Gosling,J.T.;Santiago Munoz,E.;Skoug,R.M.;Goldstein,B.E.;Neugebauer,M.;Riley,P.;Balogh,A. https://doi.org/10.1029/1999JA000383
  11. ApJ v.128 Dynamics of the Interplanetary Gas and Magnetic Field Parker,E.N. https://doi.org/10.1086/146579
  12. ApJ v.220 Dynamics of the Quiescent Solar Corona Rosner,R.;Tucker,W.H.;Vaiana,G.S. https://doi.org/10.1086/155949
  13. J. Geophys. Res. v.89 The Power Spectrum of Interplanetary Alfvenicic Fluctuation Derivation of the Governing Equation and Its Solution Tu,C.Y.;Pu,Z,Y.;Wei,F.S. https://doi.org/10.1029/JA089iA11p09695
  14. Sol. Phys. v.109 A Solar Wind with the Power Spectrum of Alfvenicic Fluctuations Tu,C.Y. https://doi.org/10.1007/BF01341161
  15. Sol. Phys. v.171 Two-Fluid Model for Heating of the Soalr Corona and Acceleration of the Solar Wind by High-Frequency Alfvenic-wave Tu,C.Y.;Marsch,E.
  16. A & A v.368 Wave dissipation by ion cyclotron resonance in the solar corona Tu,C.Y.;Marsch,E. https://doi.org/10.1051/0004-6361:20010019
  17. ApJ v.325 The temperature structure, mass, and energy flow in the corona and inner solar wind Withbroe,G.L. https://doi.org/10.1086/166015

Cited by

  1. Transit times of interplanetary coronal mass ejections and the solar wind speed vol.472, pp.3, 2007, https://doi.org/10.1051/0004-6361:20077499
  2. Metric Tensor Approach in Solar Wind for Rapidly Rotating Stellar vol.820, 2017, https://doi.org/10.1088/1742-6596/820/1/012034
  3. A Review on Solar Wind Modeling: Kinetic and Fluid Aspects vol.32, pp.1, 2011, https://doi.org/10.1007/s10712-010-9106-y