DOI QR코드

DOI QR Code

TOWARD A NEXT GENERATION SOLAR CORONAGRAPH: DEVELOPMENT OF A COMPACT DIAGNOSTIC CORONAGRAPH FOR THE ISS

  • Cho, K.S. (Korea Astronomy and Space Science Institute) ;
  • Bong, S.C. (Korea Astronomy and Space Science Institute) ;
  • Choi, S. (Korea Astronomy and Space Science Institute) ;
  • Yang, H. (Korea Astronomy and Space Science Institute) ;
  • Kim, J. (Korea Astronomy and Space Science Institute) ;
  • Baek, J.H. (Korea Astronomy and Space Science Institute) ;
  • Park, J. (Korea Astronomy and Space Science Institute) ;
  • Lim, E.K. (Korea Astronomy and Space Science Institute) ;
  • Kim, R.S. (Korea Astronomy and Space Science Institute) ;
  • Kim, S. (Korea Astronomy and Space Science Institute) ;
  • Kim, Y.H. (Korea Astronomy and Space Science Institute) ;
  • Park, Y.D. (Korea Astronomy and Space Science Institute) ;
  • Clarke, S.W. (NASA Headquarters) ;
  • Davila, J.M. (NASA Goddard Space Flight Center) ;
  • Gopalswamy, N. (NASA Goddard Space Flight Center) ;
  • Nakariakov, V.M. (University of Warwick) ;
  • Li, B. (Sandong University) ;
  • Pinto, R.F. (Universite de Toulouse, UPS-OMP, IRAP)
  • Received : 2017.07.02
  • Accepted : 2017.08.07
  • Published : 2017.10.31

Abstract

The Korea Astronomy and Space Science Institute plans to develop a coronagraph in collaboration with National Aeronautics and Space Administration (NASA) and to install it on the International Space Station (ISS). The coronagraph is an externally occulted one-stage coronagraph with a field of view from 3 to 15 solar radii. The observation wavelength is approximately 400 nm, where strong Fraunhofer absorption lines from the photosphere experience thermal broadening and Doppler shift through scattering by coronal electrons. Photometric filter observations around this band enable the estimation of 2D electron temperature and electron velocity distribution in the corona. Together with a high time cadence (<12 min) of corona images used to determine the geometric and kinematic parameters of coronal mass ejections, the coronagraph will yield the spatial distribution of electron density by measuring the polarized brightness. For the purpose of technical demonstration, we intend to observe the total solar eclipse in August 2017 with the filter system and to perform a stratospheric balloon experiment in 2019 with the engineering model of the coronagraph. The coronagraph is planned to be installed on the ISS in 2021 for addressing a number of questions (e.g., coronal heating and solar wind acceleration) that are both fundamental and practically important in the physics of the solar corona and of the heliosphere.

Keywords

References

  1. Abbo, L., Ofman, L., Antiochos, S. K., Hansteen, V. H., Harra, L., Ko, Y.-K., Lapenta, G., Li, B., Riley, P., Strachan, L., von Steiger, R., &Wang, Y.-M. 2016, Slow Solar Wind: Observations and Modeling, Space Sci. Rev., 201, 55 https://doi.org/10.1007/s11214-016-0264-1
  2. Alfven, H. 1947, Granulation, Magneto-Hydrodynamic Waves, and the Heating of the Solar Corona, MNRAS, 107, 211 https://doi.org/10.1093/mnras/107.2.211
  3. Baumbach, S. 1937, Strahlung, Ergiebigkeit und Elektronendichte der Sonnenkorona, AN, 263, 120
  4. Bout, M., Lamy, P., Maucherat, A., Colin, C., & Llebaria, A. 2000, Experimental Study of External Occulters for the Large Angle and Spectrometric Coronagraph 2: LASCO-C2, Appl. Opt., 39, 3955 https://doi.org/10.1364/AO.39.003955
  5. Breitling, F., Mann, G., Vocks, C., Steinmetz, M., & Strassmeier, K. G. 2015, The LOFAR Solar Imaging Pipeline and the LOFAR Solar Data Center, Astronomy and Computing, 13, 99 https://doi.org/10.1016/j.ascom.2015.08.001
  6. Cho, K., Chae, J., Lim, E.-K., Cho, K.-S., Bong, S.-C., & Yang, H. 2016, A New Method to Determine Temperature of CMES Using a Coronagraph Filter System, JKAS, 49, 45
  7. Cram, L. E. 1976, Determination of the Temperature of the Solar Corona from the Spectrum of the Electron-Scattering Continuum, Sol. Phys., 48, 3 https://doi.org/10.1007/BF00153327
  8. Cranmer, S. R. 2002, Coronal Holes and the High-Speed Solar Wind, Space Sci. Rev., 101, 229 https://doi.org/10.1023/A:1020840004535
  9. Cranmer, S. R. 2009, Coronal Holes, Living Rev. Sol. Phys., 6, 3
  10. Cranmer, S. R., & van Ballegooijen, A. A. 2005, On the Generation, Propagation, and Reflection of Alfven Waves from the Solar Photosphere to the Distant, ApJS, 156, 265 https://doi.org/10.1086/426507
  11. Cranmer, S. R., van Ballegooijen, A. A., & Edgar, R. J. 2007, Self-Consistent Coronal Heating and Solar Wind Acceleration from Anisotropic Magnetohydrodynamic Turbulence, ApJS, 171, 520 https://doi.org/10.1086/518001
  12. Fu, H., Li, B., Li, X., Huang, Z., Mou, C., Jiao, F., & Xia, L. 2015, Coronal Sources and In Situ Properties of the Solar Winds Sampled by ACE During 1999 - 2008, Sol. Phys., 290, 1399 https://doi.org/10.1007/s11207-015-0689-9
  13. Fujiki, K., Tokumaru, M., Iju, T., Hakamada, K., & Kojima, M. 2015, Relationship Between Solar-Wind Speed and Coronal Magnetic-Field Properties, Sol. Phys., 290, 2491 https://doi.org/10.1007/s11207-015-0742-8
  14. Goddard, C. R., Nistico, G., Nakariakov, V. M., Zimovets, I. V., & White, S. M. 2016, Observation of Quasi-Periodic Solar Radio Bursts Associated with Propagating Fast-Mode Waves, A&A, 594, A96 https://doi.org/10.1051/0004-6361/201628478
  15. Gong, Q., & Socker, D. 2004, Theoretical Study of the Occulted Solar Coronagraph, SPIE, 5526, 208
  16. Grail, R. R., Coles, W. A., Klinglesmith, M. T., Breen, A. R., Williams, P. J. S., Markkanen, J., & Esser, R. 1996, Rapid Acceleration of the Polar Solar Wind, Nature, 379, 429 https://doi.org/10.1038/379429a0
  17. Gressl, C., Veronig, A. M., Temmer, M., Odstrcil, D., Linker, J. A., Mikic, Z., & Riley, P. 2014, Comparative Study of MHD Modeling of the Background Solar Wind, Sol. Phys., 289, 1783 https://doi.org/10.1007/s11207-013-0421-6
  18. Hassler, D. M., Dammasch, I. E., Lemaire, P., Brekke, P., Curdt, W., Mason, H. E., Vial, J.-C., & Wilhelm, K. 1999, Solar Wind Outflow and the Chromospheric Magnetic Network, Science, 283, 810 https://doi.org/10.1126/science.283.5403.810
  19. Hayes, A. P., Vourlidas, A., & Howard, R. A. 2001, Deriving the Electron Density of the Solar Corona from the Inversion of Total Brightness Measurements, ApJ, 548, 1081 https://doi.org/10.1086/319029
  20. Howard, R. A., Sheeley, N. R. Jr., Michels, D. J., & Koomen, M. J. 1985, Coronal Mass Ejections - 1979-1981, J. Geophys. Res., 90, 8173 https://doi.org/10.1029/JA090iA09p08173
  21. Illing, R. M. E., & Hundhausen, A. J. 1985, Observation of a Coronal Transient from 1.2 to 6 Solar Radii, J. Geophys. Res., 90, 275 https://doi.org/10.1029/JA090iA01p00275
  22. Kohl, J. L., Noci, G., Antonucci, E., et al. 1998, UVCS/SOHO Empirical Determinations of Anisotropic Velocity Distributions in the Solar Corona, ApJ, 501, L127 https://doi.org/10.1086/311434
  23. Koutchmy, S. 1988, Space-Borne Coronagraphy, SSRv, 47, 95
  24. Kurucz, R. L. 2005, New Atlases for Solar Flux, Irradiance, Central Intensity, and Limb Intensity, Memorie della Societa Astronomica Italiana Supplement, 8, 189
  25. Kwon, R.-Y., Ofman, L., Olmedo, O., Kramar, M., Davila, J. M., Thompson, B. J., & Cho, K.-S. 2013, STEREO Observations of Fast Magnetosonic Waves in the Extended Solar Corona Associated with EIT/EUV Waves, A&A, 766, 55
  26. Landini, F., Vives, S., Romoli, M., et al. 2012, Optimization of the Occulter for the Solar Orbiter/METIS Coronagraph, SPIE, 8442, 844227
  27. Landini, F., Romoli, M., Capobianco, G., et al. 2013, Improved Stray Light Suppression Performance for the Solar Orbiter/METIS Inverted External Occulter, SPIE, 8862, 886204
  28. Lee, H., Moon, Y.-J., & Nakariakov, V. M. 2015, Radial and Azimuthal Oscillations of Halo Coronal Mass Ejections in the Sun, ApJL, 803, L7 https://doi.org/10.1088/2041-8205/803/1/L7
  29. Li, B., Xia, L. D., & Chen, Y. 2011, Solar Winds along Curved Magnetic Field Lines, A&A, 529, A148 https://doi.org/10.1051/0004-6361/201116668
  30. Lionello, R., Linker, J. A., & Mikic, Z. 2001, Including the Transition Region in Models of the Large-Scale Solar Corona, ApJ, 546, 542 https://doi.org/10.1086/318254
  31. Liu, W., Title, A. M., Zhao, J., Ofman, L., Schrijver, C. J., Aschwanden, M. J., De Pontieu, B., & Tarbell, T. D. 2011, Direct Imaging of Quasi-Periodic Fast Propagating Waves of -2000 km $s^{-1}$ in the Low Solar Corona by the Solar Dynamics Observatory Atmospheric Imaging Assembly, ApJL, 736, L13 https://doi.org/10.1088/2041-8205/736/1/L13
  32. Michalek, G., Shanmugaraju, A., Gopalswamy, N., Yashiro, S., & Akiyama, S. 2016, Statistical Analysis of Periodic Oscillations in LASCO Coronal Mass Ejection Speeds, Sol. Phys., 291, 3751 https://doi.org/10.1007/s11207-016-1000-4
  33. November, L. J., & Koutchmy, S. 1996, White-Light Coronal Dark Threads and Density Fine Structure, ApJ, 466, 512 https://doi.org/10.1086/177528
  34. Pinto, R. F., & Rouillard, A. P. 2017, A Multiple Flux-tube Solar Wind Model, ApJ, 838, 89 https://doi.org/10.3847/1538-4357/aa6398
  35. Plotnikov, I., Rouillard, A. P., Davies, J. A., et al. 2016, Long-Term Tracking of Corotating Density Structures Using Heliospheric Imaging, Sol. Phys., 291, 1853 https://doi.org/10.1007/s11207-016-0935-9
  36. Rougeot, R., Flamary, R., Galano, D., & Aime, C. 2017, Performance of the Hybrid Externally Occulted Lyot Solar Coronagraph. Application to ASPIICS, A&A, 599, A2 https://doi.org/10.1051/0004-6361/201629259
  37. Nakariakov, V. M., Ofman, L., & Arber, T. D. 2000, Nonlinear Dissipative Spherical Alfven Waves in Solar Coronal Holes, A&A, 353, 741
  38. Ofman, L., Romoli, M., Poletto, G., Noci, G., & Kohl, J. L. 1997, Ultraviolet Coronagraph Spectrometer Observations of Density Fluctuations in the Solar Wind, ApJL, 491, L111 https://doi.org/10.1086/311067
  39. Parker, E. N. 1958, Dynamics of the Interplanetary Gas and Magnetic Fields, ApJ, 128, 664 https://doi.org/10.1086/146579
  40. Pascoe, D. J., Nakariakov, V. M., & Kupriyanova, E. G. 2013, Fast Magnetoacoustic Wave Trains in Magnetic Funnels of the Solar Corona, A&A, 560, A97 https://doi.org/10.1051/0004-6361/201322678
  41. Purcell, J. D., & Koomen, M. J. 1962, Coronagraph with Improved Scattered-Light Properties, Report of NRL Progress (Washington, D.C.: U.S. GPO)
  42. Reginald, N. 2001, MACS, an Instrument, and a Methodology for Simultaneous and Global Measurements of the Coronal Electron Temperature and the Solar Wind Velocity on the Solar Corona, PhD Thesis, University of Delaware, Source DAI-B 61/12, 6516
  43. Richardson, J. D., & Kasper, J. C. 2008, Solar Cycle Variations of Solar Wind Dynamics and Structures, J. Atmos. Solar-Terrestrial Phys., 70, 219 https://doi.org/10.1016/j.jastp.2007.08.039
  44. Rotter, T., Veronig, A. M., Temmer, M., & Vrsnak, B. 2012, Relation Between Coronal Hole Areas on the Sun and the Solar Wind Parameters at 1 AU, Sol. Phys., 281, 793 https://doi.org/10.1007/s11207-012-0101-y
  45. Thernisien, A. F. R., Howard, R. A., & Vourlidas, A. 2006, Modeling of Flux Rope Coronal Mass Ejections, ApJ, 652, 763 https://doi.org/10.1086/508254
  46. Tokumaru, M., Kojima, M., & Fujiki, K. 2010, Solar Cycle Evolution of the Solar Wind Speed Distribution from 1985 to 2008, JGR, 115, A04102
  47. van der Holst, B., Sokolov, I. V., Meng, X., Jin, M., Manchester, W. B. IV, Toth, G., & Gombosi, T. I. 2014, Alfven Wave Solar Model (AWSoM): Coronal Heating, ApJ, 782, 81. https://doi.org/10.1088/0004-637X/782/2/81
  48. Wang, Y. M., Sheeley, N. R., Socker, D. G., Howard, R. A., & Rich, N. B. 2000, The Dynamical Nature of Coronal Streamers, J. Geophys. Res., 105, 25133 https://doi.org/10.1029/2000JA000149
  49. Wang, Y.-M., & Sheeley, N. R. Jr. 1990, Solar Wind Speed and Coronal Flux-Tube Expansion, ApJ, 355, 726 https://doi.org/10.1086/168805
  50. Yang, L. P., Feng, X. S., He, J. S., Zhang, L., & Zhang, M. 2016, A Self-Consistent Numerical Study of the Global Solar Wind Driven by the Unified Nonlinear Alfven Wave, Sol. Phys., 291, 953 https://doi.org/10.1007/s11207-016-0861-x
  51. Yashiro, S., Gopalswamy, N., Michalek, G., St. Cyr, O. C., Plunkett, S. P., Rich, N. B., & Howard, R. A. 2004, A Catalog of White Light Coronal Mass Ejections Observed by the SOHO Spacecraft, J. Geophys. Res., 109, A07105

Cited by

  1. Two-Dimensional Solar Wind Speeds from 6 to 26 Solar Radii in Solar Cycle 24 by Using Fourier Filtering vol.121, pp.7, 2018, https://doi.org/10.1103/PhysRevLett.121.075101