• Title/Summary/Keyword: soil-structure-interaction

Search Result 605, Processing Time 0.033 seconds

Studies on Behavior Characteristics of Retrofitted Cut-and-Cover Underground Station Using Centrifuge Test Results (원심모형실험을 이용한 내진 보강된 개착식 지하역사의 거동특성 연구)

  • Kim, Jin-Ho;Yi, Na-Hyun;Lee, Hoo-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.24-33
    • /
    • 2017
  • Domestic urban railway underground station structures, which were built in the 1970s ad 1980s, had been constructed as Cut-and-Cover construction system without seismic design. Because the trends of earthquake occurrence is constantly increasing all over the world as well as the Korean Peninsula, massive human casualties and severe properties and structures damage might be occurred in an non-retrofitted underground station during an earthquake above a certain scale. Therefore, to evaluate the retrofit effect and soil-structure interaction of seismic retrofitted underground station, a centrifugal shaking table test with enhanced stiffness on its structural main member are carried out on 1/60 scaled model using the Kobe and Northridge earthquakes. The seismic retrofitted members, which are columns, side walls, and slabs, are evaluated to comparing with existing non-retrofitted centrifuge test results Also, to simulate the scaled ground using variation of shear velocity according to site conditions such as ground depth and density, resonant column test is performed. From the test results, the relative displacement behavior between ground and structures shows comparatively similar in ground, but is increased on ground surface. The seismic retrofit effects were measured using relative displacements and moment behavior of column and side walls rather than slabs. Additionally, earthquake wave can be used to main design factor due to large structural deformation on Kobe earthquake wave than Norhridge earthquake wave.

Embedment Effect of Foundation on the Response of Base-Isolated NPP Structure (기초의 묻힘이 면진 원전구조물의 지진응답에 미치는 효과)

  • Lee, Eun-Haeng;Kim, Jae-Min;Lee, Sang-Hoon;Kim, Jae-Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.5
    • /
    • pp.377-388
    • /
    • 2016
  • This study is aimed to evaluate the embedment effect of foundation as compared to the surface foundation on the response of a base-isolated nuclear power plant structure. For this purpose, the boundary reaction method (BRM), which is a two-step frequency domain and time domain technique, is used for the nonlinear SSI analysis considering nonlinear behavior of base isolators. The numerical model of the BRM is verified by comparing the numerical results obtained by the BRM and the conventional frequency-domain SSI analysis for an equivalent linear SSI system. Finally, the displacement response of the base isolation and the horizontal response of the structure obtained by the nonlinear SSI analysis using the moat foundation model are compared with those using the surface foundation model. The comparison showed that the displacement response of the base isolation can be reduced by considering the embedment effect of foundation.

Design Optimization of Earth Retaining Walls Using the Taguchi Method (다구찌 기법을 활용한 흙막이 가설공법 최적설계 방안)

  • Moon, Sungwoo;Kim, Sungbu
    • Korean Journal of Construction Engineering and Management
    • /
    • v.18 no.1
    • /
    • pp.83-89
    • /
    • 2017
  • Temporary structures provide the accessible working area when building a permanent building structure in the construction operation. Executed in a natural environment, the temporary structure is prone to the external influence factors of underground water, soil conditions, etc. These factors should be carefully considered in designing the temporary structure. The objective of this study is to apply the external influence factors in designing a more reliable earth retaining wall. The research methodology is based on the Taguchi method that has been studied to improve product quality in the industry. An orthogonal array was developed to analyze the interaction between the external influence factors and the internal influence factors. A sample case study demonstrated that the Taguchi method can be used in planning a more reliable temporary structure for earth retaining walls.

Structure and Variation of Tidal Flat Temperature in Gomso Bay, West Coast of Korea (서해안 곰소만 갯벌 온도의 구조 및 변화)

  • Lee, Sang-Ho;Cho, Yang-Ki;You, Kwang-Woo;Kim, Young-Gon;Choi, Hyun-Yong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.1
    • /
    • pp.100-112
    • /
    • 2005
  • Soil temperature was measured from the surface to 40 cm depth at three stations with different heights in tidal flat of Gomso Bay, west coast of Korea, for one month in every season 2004 to examine the thermal structure and the variation. Mean temperature in surface layer was higher in summer and lower in winter than in lower layer, reflecting the seasonal variation of vertically propagating structure of temperature by heating and cooling from the tidal flat surface. Standard deviation of temperature decreased from the surface to lower layer. Periodic variations of solar radiation energy and tide mainly caused short term variation of soil temperature, which was also intermittently influenced by precipitation and wind. Time series analysis showed the power spectral energy peaks at the periods of 24, 12 and 8 hours, and the strongest peak appeared at 24 hour period. These peaks can be interpreted as temperature waves forced by variations of solar radiation, diurnal tide and interaction of both variations, respectively. EOF analysis showed that the first and the second modes resolved 96% of variation of vertical temperature structure. The first mode was interpreted as the heating antl cooling from tidal flat surface and the second mode as the effect of phase lag produced by temperature wave propagation in the soil. The phase of heat transfer by 24 hour period wave, analyzed by cross spectrum, showed that mean phase difference of the temperature wave increased almost linearly with the soil depth. The time lags by the phase difference from surface to 10, 20 and 40cm were 3.2,6.5 and 9.8 hours, respectively. Vertical thermal diffusivity of temperature wave of 24 hour period was estimated using one dimensional thermal diffusion model. Average diffusivity over the soil depths and seasons resulted in $0.70{\times}10^{-6}m^2/s$ at the middle station and $0.57{\times}10^{-6}m^2/s$ at the lowest station. The depth-averaged diffusivity was large in spring and small in summer and the seasonal mean diffusivity vertically increased from 2 cm to 10 cm and decreased from 10 cm to 40 cm. Thermal propagation speeds were estimated by $8.75{\times}10^{-4}cm/s,\;3.8{\times}10{-4}cm/s,\;and\;1.7{\times}10^{-4}cm/s$ from 2 cm to 10 cm, 20 cm and 40 cm, respectively, indicating the speed reduction with depth increasing from the surface.

Seismic analysis and performance for stone pagoda structure under Gyeongju earthquake in Korea

  • Kim, Ho-Soo;Kim, Dong-Kwan;Jeon, Geon-Woo
    • Earthquakes and Structures
    • /
    • v.21 no.5
    • /
    • pp.531-549
    • /
    • 2021
  • Analytical models were developed and seismic behaviors were analyzed for a three-story stone pagoda at the Cheollyongsa temple site, which was damaged by the Gyeongju earthquake of 2016. Both finite and discrete element modeling were used and the analysis results were compared to the actual earthquake damage. Vulnerable parts of stone pagoda structure were identified and their seismic behaviors via sliding, rocking, and risk analyses were verified. In finite and discrete element analyses, the 3F main body stone was displaced uniaxially by 60 and 80 mm, respectively, similar to the actual displacement of 90 mm resulting from the earthquake. Considering various input conditions such as uniaxial excitation and soil-structure interaction, as well as seismic components and the distance from the epicenter, both models yielded reasonable and applicable results. The Gyeongju earthquake exhibited extreme short-period characteristics; thus, short-period structures such as stone pagodas were seriously damaged. In addition, we found that sliding occurred in the upper parts because the vertical load was low, but rocking predominated in the lower parts because most structural members were slender. The third-floor main body and roof stones were particularly vulnerable because some damage occurred when the sliding and rocking limits were exceeded. Risk analysis revealed that the probability of collapse was minimal at 0.1 g, but exceeded 80% at above 0.3 g. The collapse risks at an earthquake peak ground acceleration of 0.154 g at the immediate occupancy, life safety, and collapse prevention levels were 90%, 52%, and 6% respectively. When the actual damage was compared with the risk analysis, the stone pagoda retained earthquake-resistant performance at the life safety level.

Field Test on the Rigidities of Substructures of High Speed Railway Bridges (고속철도교량 하부구조 강성도에 관한 현장실험)

  • Chin Won-Jong;Choi Eun-Suk;Kwark Jong-Won;Kang Jae-Yoon;Cho Jeong-Rae;Kim Byung-Suk
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.1 s.32
    • /
    • pp.118-124
    • /
    • 2006
  • SThe rigidities of bridge substructures are the important data in the rail-bridge interaction analysis in Korean High -Speed Railway. This experimental study is being performed because of followings. 1) More correct longitudinal stiffness of the structure including substructure should be considered in the calculation of stresses in rails. 2) There are many uncertainties in the design and construction of the piers and foundations. 3) Actual guideline for the rigidities of piers and foundations in the design is necessary. 4) Measurement on the rigidity of pier according to the types of piers, foundations and soil-conditions is needed. Curve for estimating the total rigidity of substructure will be obtained through this and further experimental studies. It may be used in the analysis of Korean High-Speed Railway bridge and then, longitudinal stresses in the rails can be estimated more accurately. One pair of piers, which consist of pot-bearing for fixed support and pad-bearing for movable support, are loaded by steel frame devices with steel wire ropes and hydraulic jack. The responses which are measured at each loading stages in those field tests are displacements and tilted angles on the top and bottom of piers. This study is being performed testing and analysis about several piers in the construction field.

Evaluation of Performance of Korean Existing School Buildings with Masonry Infilled Walls Against Earthquakes (조적조 비내력벽을 가진 기존 학교 구조물의 내진 성능평가)

  • Moon, Ki Hoon;Jeon, Yong Ryul;Lee, Chang Seok;Han, Sang Whan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.6
    • /
    • pp.37-46
    • /
    • 2012
  • In Korea, most existing school buildings have been constructed with moment frames with un-reinforced infill walls designed only considering gravity loads. Thus, the buildings may not perform satisfactorily during earthquakes expected in Korea. In exterior frames of the building, un-reinforced masonry infill walls with window openings are commonly placed, which may alter the structural behavior of adjacent columns due to the interaction between the wall and column. The objective of this study is to evaluate the seismic performance of existing school buildings according to the procedure specified in ATC 63. Analytical models are proposed to simulate the structural behavior of columns, infill walls and their interaction. The accuracy of the proposed model is verified by comparing the analytical results with the experimental test results for one bay frames with and without infill walls with openings. For seismic performance evaluation, three story buildings are considered as model frames located at sites having different soil conditions ($S_A$, $S_B$, $S_C$, $S_D$, $S_E$) in Korea. It is observed that columns behaves as a short columns governed by shear due to infill masonry walls with openings. The collapse probabilities of the frames under maximum considered earthquake ranges from 62.9 to 99.5 %, which far exceed the allowable value specified in ATC 63.

A Study on the Behavior of Buried Flexible Pipes with Soil Condition (지반조건에 따른 지중매설 연성관의 거동에 관한 연구)

  • Lee, Hyoung-Kyu;Park, Joon-Seok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.1
    • /
    • pp.33-40
    • /
    • 2014
  • In general, pipes buried underground can be classified into either rigid or flexible pipe. Glass fiber reinforced thermosetting polymer plastic (GFRP) pipe can be considered as one of typical flexible pipes for which the soil-pipe structure interaction must be taked into account in the design. In this paper, we present the result of an investigation pertaining to the short-term and long-term behavior of buried GFRP pipe. The mechanical properties of the GFRP pipe produced in the domestic manufacturer are determined and the results are reported in this paper. In addition, Ring deflection is measured by the field tests and the finite element analysis. Also, the extrapolation using these techniques typically extends the trend from data gathered over a period of approximately 5,232 hours, to a prediction of the property at 50 years, which is the typical maximum extrapolation time. Therefore, it was investigated that the long-term ring deflection of GFRP pipe estimated by methods for Monod-type.

Evaluation of Shear Elastic Modulus by Changing Injection Ratio of Grout (그라우트 주입률 변화에 따른 전단탄성계수 평가)

  • Baek, Seungcheol;Lee, Jundae;Ahn, Kwangkuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.2
    • /
    • pp.51-55
    • /
    • 2013
  • Among various construction methods, deep soil stabilization by chemical method have been widely used in order to improve soft ground. Dynamic variables using ground(such as sand, weathered granite soil and rock) -structure interaction design affected by dynamic load and cyclic load were studied a lot. However, there is something yet to learn about earthquake resistant design regarding reinforced ground by grout. Therefore, in this study using RC test, the correlation between shear strain and shear modulus with change of water content and injection rate in normal portland cement and clay was compared and analyzed by using Ramberg-Osgood model normalization As the result, dynamic coefficient was considerably affected by water content and grout injection rate.

Spatial Variations of Salt Marsh Plants Induced by Sandy Sediment in Hampyeong Tidal Flat (함평만 갯벌의 모래 퇴적물로 인한 염습지 식물의 공간적 변이)

  • Minki, Hong;Jaeyeon, Lee;Jeong-Soo, Park;Hyohyemi, Lee
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.4
    • /
    • pp.247-258
    • /
    • 2022
  • Hampyeong Bay has a narrow seawater channel and a complex topographical structure. The sand content of the tidal flat soil is increasing due to asymmetrical sedimentation. Through the investigation of the vegetation distribution and the use of the line-transect method, sand flats were observed to gradually change the vegetation distribution of salt marshes. Comparing the vegetation area between 2016 and 2022, the obligate halophyte Suaeda maritima decreased by 74% and Zoysia sinica increased by 75%. Z. sinica seems to support the robustness of the dune environment by trapping sediments such as sand in the colony, because the underground rhizomes and stems are highly developed. To establish an effective conservation management plan for tidal flats, an integrated study should be conducted to assess the impact of changes in tidal flat soil and the interaction of vegetation communities in Hampyeong Bay.