DOI QR코드

DOI QR Code

Embedment Effect of Foundation on the Response of Base-Isolated NPP Structure

기초의 묻힘이 면진 원전구조물의 지진응답에 미치는 효과

  • Received : 2016.03.17
  • Accepted : 2016.09.29
  • Published : 2016.10.30

Abstract

This study is aimed to evaluate the embedment effect of foundation as compared to the surface foundation on the response of a base-isolated nuclear power plant structure. For this purpose, the boundary reaction method (BRM), which is a two-step frequency domain and time domain technique, is used for the nonlinear SSI analysis considering nonlinear behavior of base isolators. The numerical model of the BRM is verified by comparing the numerical results obtained by the BRM and the conventional frequency-domain SSI analysis for an equivalent linear SSI system. Finally, the displacement response of the base isolation and the horizontal response of the structure obtained by the nonlinear SSI analysis using the moat foundation model are compared with those using the surface foundation model. The comparison showed that the displacement response of the base isolation can be reduced by considering the embedment effect of foundation.

이 연구는 기초의 묻힘이 면진 원전구조물의 응답에 미치는 효과를 지표기초와 비교하여 평가하였다. 면진장치의 비선형성을 고려한 비선형 SSI 해석은 진동수영역해석과 시간영역해석의 복합법인 경계반력법(BRM)을 이용하여 수행하였다. BRM 해석모델은 BRM을 이용한 등가선형 SSI 해석결과를 재래의 주파수영역 SSI 해석결과와 비교함으로 검증하였다. 마지막으로 비선형 SSI해석에 의한 묻힌기초 모델의 면진장치의 변위 및 구조물 응답을 지표기초의 해석결과와 비교하였다. 비교결과, 면진장치의 변위응답은 묻힌기초효과를 고려할 경우 감소할 수 있음을 알 수 있었다.

Keywords

References

  1. Alavi, E., Alidoost, M. (2012) Soil-Structure Interaction Effects on Seismic Behavior of Base-Isolated Buildings, 15th WCEE.
  2. ANSYS Version 16.0 www.ansys.com
  3. Apsel, R.J., Luco, J.E. (1987) Impedance Functions for Foundations Embedded in a Layered Medium: An Integral Equation Approach, Earthq. Eng. & Struct. Dyn., 15, pp.213-231. https://doi.org/10.1002/eqe.4290150205
  4. ASCE 4-12 (2012) Seismic Analysis of Safety-Related Nuclear Structures and Commentary, Draft Revision 16, ASCE.
  5. Basu, U. (2009) Explicit Finite Element Perfectly Matched Layer for Transient Three-Dimensional Elastic Waves, Int. J. Numer. Meth. Eng., 77, pp.151-176. https://doi.org/10.1002/nme.2397
  6. Bernal, D., Youssef, A. (1998) A Hybrid Time Frequency Domain Formulation for Non-Linear Soil-Structure Interaction, Earthq, Eng. & Struct. Dyn, 27, pp.673-685. https://doi.org/10.1002/(SICI)1096-9845(199807)27:7<673::AID-EQE751>3.0.CO;2-3
  7. Bielak, J., Loukakis, K., Hisada, Y., Yoshimura, C. (2003) Domain Reduction Method for Three-Dimensional Earthquake Modeling in Localized Regions. Part I: theory, Bull. Seismol. Soc. Am., 93(2), pp.817-824. https://doi.org/10.1785/0120010251
  8. Deek, A.J, Randolph, M.F. (1994) Axisymmetric Time Domain Transmitting Boundaries, J. Eng. Mech., ASCE, 120(1), pp.25-42. https://doi.org/10.1061/(ASCE)0733-9399(1994)120:1(25)
  9. Forni, M., Poggianti, A., Dusi, A. (2012) Seismic Isolation of Nuclear Power Plant, 15th WCEE, pp.24-28.
  10. Gazetas, G. (1991) Formulas and Charts for Impedances of Surface and Embedded Foundations, J. Geotech. Eng., 117(9), pp.1363-1381. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:9(1363)
  11. Han, S.R., Nam, M.J., Seo, C.G., Lee, S.H. (2015) Soil-Structure Interaction Analysis for Base-Isolated Nuclear Power Plants Using an Iterative Approach, Earthq. Eng. Soc. Korea, 19(1), pp.21-28. https://doi.org/10.5000/EESK.2015.19.1.021
  12. Jarernprasert, S.E., Bazan-Zurita, E., Bielak, J. (2013) Seismic Soil-Structure Interaction Response of Inelastic Structures, Soil Dyn.& Earthq. Eng., 47, pp.132-143. https://doi.org/10.1016/j.soildyn.2012.08.008
  13. Jaya, K.P., Meher Prasad, A. (2004) Embedded Foundation with Different Parameters under Dynamic Excitations, 13th World Conf. Earthq. Eng., pp.1-6.
  14. Karabork, T., Deneme, I.O., Bilgehan, R.P. (2014) A Comparison of the Effect of SSI on Base Isolation Systems and Fixed-Base Structures for Soft Soil, Geomech. & Eng., 7(1), pp.87-103. https://doi.org/10.12989/gae.2014.7.1.087
  15. Kawamoto, J.D. (1983) Solution of Nonlinear Dynamic Structural System Based on a Hybrid Frequency-Time- Domain Approach, Research Report R83-5, MIT, Dept. of Civil Eng, Cambridge, MA.
  16. Kellezi, L. (2000) Local Transmitting Boundaries for Transient Elastic Analysis, Soil Dyn.& Earthq. Eng., 19, pp.533-547. https://doi.org/10.1016/S0267-7261(00)00029-4
  17. Kim, J.M., Lee, E.H. (2013) Boundary Reaction Method for Nonlinear Soil-Structure Interaction Analysis, KSCE Conference.
  18. Kim, J.M., Lee, E.H., Lee, S.H. (2016) Boundary Reaction Method for Nonlinear Analysis of Soil-Structure Interaction under Earthquake Loads, Soil Dyn.& Earthq. Eng., 89, pp.85-90. https://doi.org/10.1016/j.soildyn.2016.07.020
  19. Lee, E.H., Kim, J.M., Lee, S.H. (2015) Nonlinear Soil-Structure Interaction Analysis of a Seismically Isolated Nuclear Power Plant Structure using the Boundary Reaction Method, Earthq. Eng. Soc. Korea, 19(1), pp.37-43. https://doi.org/10.5000/EESK.2015.19.1.037
  20. Lee, G.H., Hong, K.Y., Lee, E.H., Kim, J.M. (2014a) Verification of Linear FE Model for Nonlinear SSI Analysis by Boundary Reaction Method, J. Comput. Struct. Eng, Inst. Korea, 27(2), pp.95-102. https://doi.org/10.7734/COSEIK.2014.27.2.95
  21. Lee, J.H., Song, J.K., Lee, E.H. (2014b) Multi-Step Analysis of Seismically Isolated NPP Containment Structures with Lead-Rubber Bearings, Earthq. Eng. Soc. Korea, 18(6), pp.261-269. https://doi.org/10.5000/EESK.2014.18.6.261
  22. Lee, J.H., Kim, J.H., Kim, J.K. (2016) Perfectly Matched Discrete Layers for Three-Dimensional Nonlinear Soil-Structure Interaction Analysis, Comput. & Struct., 165, pp.34-47. https://doi.org/10.1016/j.compstruc.2015.12.004
  23. Lee, S.H., Lee, Y.S. (2010) Application Plan of Seismic Isolation System for APR1400, Proceeding of the Earthquake Engineering Workshop, Earthq. Eng. Soc. Korea.
  24. Li, P., Song, E.X. (2014) A Viscous-Spring Transmitting Boundary for Cylindrical Wave Propagation in Saturated Poroelastic Media, Soil Dyn. & Earthq. Eng., 65, pp.269-283. https://doi.org/10.1016/j.soildyn.2014.06.022
  25. Liu, J., Gu, Y., Wang, Y., Li, B. (2006) Efficient Procedure for Seismic Analysis of Soil-Structure Interaction System, Tsinghua Sci. & Tech., 11, pp.625-631. https://doi.org/10.1016/S1007-0214(06)70244-9
  26. LSTC (2010) LS-DYNA User's Manual, Vols. 1 & 2, Version 971 R5.
  27. Luco, J.E. (2014) Effects of Soil-Structure Interaction on Seismic Base Isolation, Soil Dyn. & Earthq. Eng., 66, pp.67-177.
  28. Lysmer, J., Tabatabaie-Raissi, M., Tajirian, F., Vahdani, S., Ostadan, F. (1988) SASSI: A System for Analysis of Soil-Structure Interaction - User's Manual, University of California, Berkeley, CA.
  29. Mita, A., Luco, J.E. (1987) Dynamic Response of Embedded Foundations: A Hybrid Approach, Comput. Methods Appl. Mech. & Eng., 63, pp.233-259. https://doi.org/10.1016/0045-7825(87)90071-5
  30. Seo, C.G., Kim, J.M. (2012) KIESSI Program for 3-D Soil-Structure Interaction Analysis, J. Comput. Struct. Eng. Inst. Korea, 25(3), pp.77-83.
  31. Solberg, J.M., Hossain, Q., Blink, J.A., Bohlen, S.R., Mseis, G., Greenberg, H. (2013) Development of a Generalized Methodology for Soil-Structure Interaction Analysis Using Nonlinear Time-Domain Techniques, Report # LLNL-TR-635762, Lawrence Livermore National Laboratory.
  32. Spyrakos, C.C., Koutromanos, I.A., Maniatakis, C.A. (2009) Seismic Response of Base-Isolated Buildings Including Soil-Structure Interaction, Soil Dyn. & Earthq. Eng., 29, pp.658-668. https://doi.org/10.1016/j.soildyn.2008.07.002
  33. U.S. Nuclear Regulatory Commission (2007) Standard Review Plan(NUREC-0800), 3.7.2 Seismic System Analysis, Revision 3.