• Title/Summary/Keyword: soil nail

Search Result 123, Processing Time 0.253 seconds

Comparison of Nail Tensile Force by Feed Back Analysis rind Measurements (현장계측과 역해석에 의한 네일의 인장력 비교 연구)

  • Jeon, Seong-Kon
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.3
    • /
    • pp.33-41
    • /
    • 2002
  • Soil nailing type of retaining structures has been widely used in Korea far the purpose of the temporary and permanent support in excavations and slope stability. The important factors in application of soil nailing systems in urban excavation site nearby the existing structures are the displacement of the wall and tensile farce of the nails, etc. In this paper, the fled back analyses are carried out at 11 excavation sites to investigate the behavior of tensile farce of nails at stepwise excavation in the multi-layered strata including various rock layers. The results of the fled back analysis are less than about 50% of the measured ones. The distance of active zone by measurements are shown almost larger than that of fled back analysis when the distance of active Bone is defined from the surface of wall to the potential failure surface. And the results of fled back analysis are within the range proposed by the project CLOUTERRE and Cartier & Gigan (1983) which were 0.3$H_f$, and 0.5$H_f$, of the final excavation depth ($H_f$,) respectively, but the values of the measurement were larger than these values.

Stability Analysis for a Slope Reinforced with Pressure Grouted Soil Nails (가압식 그라우팅 쏘일네일 보강사면의 거동분석)

  • Kim, Yong-Min;Yun, Yeo-Hyeok;Lee, Sung-June;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.12
    • /
    • pp.39-52
    • /
    • 2011
  • This paper describes a new numerical analysis technique in stability analysis for a slope reinforced with pressure grouted soil nails. The installing effect of pressure grouted soil nails can be simulated in this method. Shear strength reduction method associated with finite element method is used for slope stability analysis. Factors of safety for a slope reinforced with pressure grouted soil nails are compared with those for a natural slope and a slope reinforced with gravity grouted soil nails in order to investigate their reinforcing effects. More than 50% increase in the factor of safety is obtained when the slope is reinforced with pressure grouted soil nails compared to the one with gravity grouted soil nails. The reinforcing effects of pressure grouted soil nails become obvious with increase in their length. The reinforcing mechanism of the pressure grouted soil nails for the slope stability can be explained by the slope failure surface expanding gradually toward the backfill. The increased stability of the slope reinforced with pressure grouted soil nails results mainly from their improved pull-out resistance.

The Development of End-expanded Soil Nailing Method for Ground Reinforcement and its Behavior Characteristics (선단확장형 쏘일네일링 공법 개발과 거동특성 분석)

  • Moon, Hongduk;Jung, Youndug
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.3
    • /
    • pp.19-27
    • /
    • 2013
  • Recently, the natural and man-made slope collapses occur frequently because of sudden heavy rains. So, a variety of slope reinforcement methods have been developed and applied to failure slopes. Soil nailing method usage has been increased because of its workability and economic aspects. This method has been applied in combination with other slope stability methods. Soil nailing method is a kind of combinational structure of steel bar and cement grouting. This method uses skin friction between adjacent ground and cement grouting to stabilize the slope. In this study, End-expanded soil nailing method was developed. This method consists of steel bar and anchor body attached at the tip of the nail. During construction, the anchor body at steel bar tip is settled to the ground through the expanding action. In this study, field pull-out tests were performed for un-grouting soil nailing and grouting soil nailing. From the test results, a wedge force of End-expanded soil nailing method was analyzed. And the behavior characteristics of End-expanded soil nailing were studied.

Behavior Analysis of Soil Nailed Wall through Large Scaled Load Test (대형파괴재하시험을 통한 쏘일네일 벽체의 거동분석)

  • Kang, Inkyu;Kwon, Youngho;Park, Shinyoung;Lee, Seunghyun;Kim, Hongtaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.3
    • /
    • pp.51-60
    • /
    • 2008
  • Soil nailing systems are generally many used to the temporary structure in underground excavations and reinforcements of slopes in Korea. However, large-scaled experimental studies related to soil nailing systems are mostly studies related to performance monitoring and field pullout tests. Specially, there are no researches related in the large scaled load tests of soil nailed walls in Korea. In this study, a case study on the large scaled load tests of soil nailed walls is introduced and the behavior characteristic of them is investigated. Also, they are proposed allowable deformation corresponding to the serviceability limit of soil nailed walls and ultimate deformation corresponding to the collapse state of the walls. These results can be applied to the maintenance management of soil nailed walls. And analysis on the required minimum factor of safety of soil nailed walls using the relation curve of load ratio and deformation ratio are carried out.

  • PDF

Deformation Characteristics of the Pressurized Grouting Soil Nailing Systems from the Field Pull-out Tests (현장인발시험을 통한 가압 그라우팅 쏘일네일의 변형특성)

  • Chun, Byungsik;Park, Joosuck;Park, Sisam;Jung, Jongju;Kong, Jinyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.2
    • /
    • pp.61-65
    • /
    • 2008
  • In this study, a newly modified soil nailing technology named as the PGSN (Pressurized Grouting Soil Nailing) system is proposed. Effects of various factors related to the design of the pressurized grouting soil nailing system, such as the length of re-bars and type of reinforcement materials, were examined throughout a series of the displacement-controlled field pull-out tests. 9 displacement-controlled field pull-out tests were performed and the ratio of injected grout volume to grout hole volume were also evaluated based on the measurements. In addition, short-term characteristics of pull-out deformations of the newly proposed PGSN system were analyzed and compared with those of the ordinary soil nailing system by carrying out field pull-out tests. The test results were shown that the displacements of pressurized grouting soil nailing system were decreased 30~36% in comparison with using gravity grouting soil nailing system by the pressurized effect. The displacements of steel tube were diminished 31~32% comparison with using deformed bar by the reinforcement type change from the field pull-out tests.

  • PDF

Pull-out Characteristics of Multi-Packer Pressurized Soil Nails (가압 그라우팅 쏘일네일링 공법의 인발거동 특성)

  • Cho, Jae-Yeon;Lee, Sung-June;Jeong, Sang-Seom;Ahn, Byeong-Heun
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.2
    • /
    • pp.15-22
    • /
    • 2010
  • A series of field pull-out tests were carried out to investigate the behaviour of multi-pressurized soil nails. Ten soil nails were constructed in weathered soil and then, subjected to pull-out loads. The test results showed that the ultimate pull-out resistances of soil nails constructed with high pressure were about 42~142% larger than those obtained from conventional soil nails. The deduced interface shear strength at the ground-grout interface was 71 kPa for conventional soil nails, while higher shear strength of 95~166 kPa was obtained for pressurized nails. The diameter of grouted borehole increased by about 12~27% compared to ordinary soil nails under low pressure. Also, the predicted value by the cavity expansion theory is in good agreement with the measured expanded radius of grout under injection pressure by field pull-out tests.

Design of the Green Wall System considering Distribution Effect of Earth Pressure by Soil Nail (네일의 토압분담 효과를 고려한 Green Wall 시스템의 설계)

  • Park, Si-Sam;Cho, Sung-Han;Yoo, Chan-Ho;Kim, Hong-Taek;Kim, Yong-Yeon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1038-1045
    • /
    • 2006
  • The Green Wall is highest eco-system among a segmental retaining wall systems. Recently, the demand of high segmental retaining wall (SRW) is increased in domestic. The soil nailing system is applied in order to maintain the high SRW stability for steeper slope. However, the proper design approach that can consider the earth pressure reduction effects in soil nailing system has not been proposed. This study was performed to introduce the design case by 'Two-Body Translation mechanism' to be able to consider distribution of earth pressure in the soil nailing when designing the green wall using soil nailing system. Also, this study attempts to evaluate the earth pressure change when advanced soil nailing system is constructed using $FLAC^{2D}$ ver. 3.30 program and 'Two-Body Translation mechanism'. Also in this study, various parametric studies using numerical methods as shear strength reduction (SSR) technique and limit equilibrium technique were carried out. In the parametric study, the length ratio and the bond ratio of the soil nailing were changed to identify the earth pressure reduction effect of the retaining wall reinforced by soil nailing.

  • PDF

The Retaining wall Design nearby Large Excavation for Developed Underground in Urban Area. (도심지 지하공간개발을 위한 대형 대심도 근접굴착 흙막이 설계사례)

  • Shin, Yung-Wok;Park, Jong-Min;Lee, Sung-Hwan;Lee, Bong-Yeol;Lee, Jung-Young;Chang, Huck-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.49-83
    • /
    • 2005
  • ESCP Project showed an urban excavation case and introduced design method for case of Soil-Structure behavior in urban excavation. In this case, a retaining structures design to analysis the behavior of retaining wall and adjacent structures in urban excavations was applied by using a Elasto-plastic beam and limit Equilibrium analysis and soil-structure interaction analysis. Reliable design of earth retaining structures and the ground adjacent to braced wall in urban excavation are often difficult due to many variable factors. The ground settlement and the damage of adjacent structures in urban excavation has been an imprtant issue. Therefore, the stability of the adjacent structures must be secured with the excavation support and research on the protection of adjacent structure is necessary.

  • PDF

Design and Construction of the Green Wall System considering Distribution Effect of Earth Pressure by Soil Nail (쏘일네일의 토압분담효과를 고려한 그린월 시스템의 설계 및 시공)

  • Park, Si-Sam;Cho, Sung-Han
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.3
    • /
    • pp.1-7
    • /
    • 2006
  • The Green Wall system, developed in Austria early 1960, is one of segmental concrete crib type earth retaining wall. Green wall is constructed as procedures that lay the front stretchers, rear stretchers and headers then making a rigid body through harden filled soil of interior cell. Green wall has pro-environmental advantages that able to grow grass in front space of stretchers and decrease cutting ground. In Europe, Green wall used without other reinforcement method. However, green wall used with other reinforcement method like a soil nailing because of environmental problem. This study was performed to introduce the design case by 'Two-Body Translation mechanism' to be able to consider distribution of earth pressure in the soil nailing when designing the green wall using soil nailing system. Also, this study attempts to evaluate the earth pressure change when advanced soil nailing system is constructed using $FLAC^{2D}$ ver. 3.30 program and 'Two-Body Translation mechanism'.

  • PDF

Estimation of Ultimate Pullout Resistance of Soil-Nailing Using Nonlinear (비선형회귀분석을 이용한 가압식 쏘일네일링의 극한인발저항력 판정)

  • Park, Hyun-Gue;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.2
    • /
    • pp.65-75
    • /
    • 2016
  • In this study, we constructed a database by collecting field pullout test data of the soil nailing using pressurized grouting, and suggested a method to estimate the ultimate pullout resistance using nonlinear regression analysis to overcome the problems of ultimate pullout resistance estimation using graphical methods. The load-displacement curve estimated by nonlinear regression showed a very high correlation with the field pullout test data. Estimated ultimate pullout load by nonlinear regression method was average 29% higher than estimated ultimate pullout load using previous graphical method. A sigmoidal growth model was found to be the best-fitting nonlinear regression model against rapid pullout failure. Further, an asymptotic regression model was found to be the best fit against progressive nail pullout. The unit ultimate skin friction suggested in this research reflected in the domestic geotechnical characteristics and the specifications of the pressurized grouting method. This research is expected to contribute towards establishing an independent design standard for the soil nailing by providing solutions to the problems that occur when using design charts based on foreign research.