• Title/Summary/Keyword: soil bacterium

Search Result 373, Processing Time 0.023 seconds

Decolorization of Dyehouse Effluent and Biodegradation of Congo Red by Bacillus thuringiensis RUN1

  • Olukanni, O.D.;Osuntoki, A.A.;Awotula, A.O.;Kalyani, D.C.;Gbenle, G.O.;Govindwar, S.P.
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.6
    • /
    • pp.843-849
    • /
    • 2013
  • A dye-decolorizing bacterium was isolated from a soil sample and identified as Bacillus thuringiensis using 16S rRNA sequencing. The bacterium was able to decolorize three different textile dyes, namely, Reactive blue 13, Reactive red 58, and Reactive yellow 42, and a real dyehouse effluent up to 80-95% within 6 h. Some non-textile industrially important dyes were also decolorized to different extents. Fourier transform infrared spectroscopy and gas chromatography-mass spectrometer analysis of the ethyl acetate extract of Congo red dye and its metabolites showed that the bacterium could degrade it by the asymmetric cleavage of the azo bonds to yield sodium (4-amino-3-diazenylnaphthalene-1-sulfonate) and phenylbenzene. Sodium (4-amino-3-diazenylnaphthalene-1-sulfonate) was further oxidized by the ortho-cleavage pathway to yield 2-(1-amino-2-diazenyl-2-formylvinyl) benzoic acid. There was induction of the activities of laccase and azoreductase during the decolorization of Congo red, which suggests their probable role in the biodegradation. B. thuringiensis was found to be versatile and could be used for industrial effluent biodegradation.

$\beta$-Amylase System Capable of Hydrolyzing Raw Starch Granules from Bacillus polymyxa No. 26 and Bacterial Identification

  • SOHN, CHEON-BAE;MYUNG-HEE KIM;JUNG-SURL, BAE;CHEORL-HO KIM
    • Journal of Microbiology and Biotechnology
    • /
    • v.2 no.3
    • /
    • pp.183-188
    • /
    • 1992
  • A soil bacterium which produces raw starch-digesting $\beta$-amylase in culture medium, has been screened from soils. One strain, isolated and identified as Bacillus polymyxa No. 26, was selected as a $\beta$-amylase producing bacterium. Morphological and biological characteristics of the strain were found to be similar to those of a strain belonging to B. polymyxa. The electron microscopic observations of the bacterial vegetative cells and sporulated cells were extensively done to know the corelation between the enzyme synthesis and sporulation. When the bacterium was cultured on the appropriate media (3% dextrin, 0.3% beef extract, 0.5% polypeptone, 1% yeast extract and 0.3% NaCl at pH 7.0 for 4 days) raw starch-digestible $\beta$-amylase was produced extracellularly. This strain produced 130 units of $\beta$-amylase per ml in a culture medium containing 3% dextrin at $30^\circ{C}$. This value is compared to those of other $\beta$-amylase-producing strains. The optimum pH and temperature for crude enzymes were pH 6.5 to 7.0 and $50^\circ{C}$, respectively. The enzymes were stable between pH 5.5 and 9.0 for 30 min at $45^\circ{C}$.

  • PDF

A Yellow Pigmented Soil Bacterium Producing a Polysaccharide of High Viscosity (고점도 다당류생산 미생물의 분리 및 특성)

  • Yoo, Jin-Young;Chung, Dong-Hyo
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.453-459
    • /
    • 1989
  • A strictly aerobic bacterium forming yeller pigment and a highly viscous polysaccharide was isolated. The bacterium was identified as Pseudomonas mendocia. The polysaccharide was presumed to be ${\beta}-glucan$ with o-acetyl group in its structure and the constituent sugar components were glucose and rhamnose in the molar ratio of 2.1: 1.0. The intrinsic viscosity was 64.73dl/g. The apparent viscosity of 1% aqueous solution was 428 mPa.s. at $42\;sec^{-1}$ and the yield stress of the solution was 8.89Pa. The polysaccharide did not have thermal stability but show pH and salt stability.

  • PDF

Studies on the Production of L-Glutamic Acid by Brevibacterium ammoniagenes (Brevibacterium ammoniagenes에 의한 글루탐산 제조에 관한 연구)

  • Yoo, Young-Jin;Kim, Taik-Yung
    • Korean Journal of Food Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.1-9
    • /
    • 1977
  • A bacterium strain (K-173-10) which was isolated from waste soil of Korea brewing factory, could be grown on acetate as the sole carbon source and accumulated a considerable amount of L-glutamic acid in the medium. This strain was identified as the new species Brevibacterium ammoniagenes. This study was concerned not only with the culture condition for the production of L-glutamic acid and the cell growth, but also with the effects on concentration of various kind of organic substances, growth factors and penicillin. The results obtained were summarized as follow; 1. It was found that the concentrations of acetate and ammonium ions affected the growth of the bacterium as well as its L-glutamate accumulation. The optimum conditions of the composition of grown media for the growth of the bacterium and its glutamic acid production was found to be 40 g/l of total acetate, $100\;{\mu}g/l$ thiamine, $0.5\;{\mu}g/l$ biotin and $1{\sim}2g/l$ corn steep liquor as the growth factors. 2. Organic acid such as succinic acid, malic acid and ${\alpha}-ketoglutaric$ acid inhibited the cell growth as well as its L-glutamic acid production. 3. The penicillin (20 units/ml) stimulated the production of glutamic acid at appropriate incubation period. 4. It was found that this strain could grow in the presence of urea and ammonium acetate but not in other nitrogen sources.

  • PDF

Growth Response of Avena sativa in Amino-Acids-Rich Soils Converted from Phenol-Contaminated Soils by Corynebacterium glutamicum

  • Lee, Soo-Youn;Kim, Bit-Na;Choi, Yong-Woo;Yoo, Kye-Sang;Kim, Yang-Hoon;Min, Ji-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.4
    • /
    • pp.541-546
    • /
    • 2012
  • The biodegradation of phenol in laboratory-contaminated soil was investigated using the Gram-positive soil bacterium Corynebacterium glutamicum. This study showed that the phenol degradation caused by C. glutamicum was greatly enhanced by the addition of 1% yeast extract. From the toxicity test using Daphnia magna, the soil did not exhibit any hazardous effects after the phenol was removed using C. glutamicum. Additionally, the treatment of the phenol-contaminated soils with C. glutamicum increased various soil amino acid compositions, such as glycine, threonine, isoleucine, alanine, valine, leucine, tyrosine, and phenylalanine. This phenomenon induced an increase in the seed germination rate and the root elongation of Avena sativa (oat). This probably reflects that increased soil amino acid composition due to C. glutamicum treatment strengthens the plant roots. Therefore, the phenol-contaminated soil was effectively converted through increased soil amino acid composition, and additionally, the phenol in the soil environment was biodegraded by C. glutamicum.

Pseudomonas putida Strain 17 Isolated from Replant Soil Promotes Tomato Growth and Inhibits Conidial Germination of Soilborne Plant Pathogens

  • Lee, Sang-Woo;Ahn, Il-Pyung;Lim, Jae-Wook;Lee, Yong-Hwan
    • The Plant Pathology Journal
    • /
    • v.21 no.3
    • /
    • pp.244-251
    • /
    • 2005
  • The induction of growth promotion on numerous crops by rhizobacteria is a well documented phenomenon. In case of tomato (Lycopersicon esculentum), fruit yield is higher in replant soil than that in fresh soil. To investigate what kind of rhizobacterium is involved, microbial community in rhizosphere and on rhizoplane of tomato plants from each soil was analyzed by dilution plating on selective media. Many Gram-negative bacteria and actinomycetes were isolated from tomato in replant soil. One Gram-negative rhizobacterium isolated was identified as Pseudomonas putida based on its biochemical characteristics, fatty acid methyl ester analysis and 16S rDNA sequence. This bacterium designated strain 17 inhibited the growth of Pseudomonas corrugata, and increased growth of tomato seedlings. In addition, its culture filtrate inhibited conidial germination of plant-pathogenic fungi such as Fusarium oxysporum f. sp. radicis-lycopersici, F. oxysporum f. sp. cucumerinum, and Nectria radicicola. Scanning electron microscopy revealed strain 17 colonized and persisted on the epidermal surfaces of tomato radicles and roots. These results suggest that P. putida strain 17 may serve as a biological control agent to suppress multiple soil-borne diseases for tomato plants. Increased microbial populations that suppress deleterious microorganisms including pathogens could be one of the major factors in increased tomato yield in replant soil.

Isolation of Exopolysaccharide-Producing Bacillus polymyxa KS-1 and Some Properties of Exopolysaccharide (다당류를 생산하는 Bacillus polymyxa KS-1의 분리 및 생산 다당류의 특성)

  • 권기석;주현규;오태광
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.1
    • /
    • pp.34-39
    • /
    • 1992
  • For the screening of new-functional and specific exopolysaccharide, a bacterium strain was isolated from soil through the two steps of screening. The isolated bacterium was identified as Bacillus polymyxa KS-1 according to the criteria of morphological, physiological, and chemical taxonomic analyses. The exopolysaccharide was composed of glucose:galactose: mannose and galactosamine in an approximate molar ratio of 1.00:0.36:1.02:1.10. The produced exopolysaccharide by Bacillus polymyxa KS-1 was found to be revealed new acidic polysaccharide which did not contain pentose, ketose, starch, and uronic acid.

  • PDF

Reclassification of a Carboxydobacterium, Acinetobacter sp. Strain JC1 DSM3803, as Mycobacterium sp. Strain JC1 DSM 3803

  • Taeksun Song;Lee, Hyeyoung;Park, Yong-Ha;Kim, Eungbin;Ro, Young-Tae;Kim, Si-Wouk;Kim, Young-Min
    • Journal of Microbiology
    • /
    • v.40 no.3
    • /
    • pp.237-240
    • /
    • 2002
  • A carboxydotrophic bacterium, isolated from a soil sample in Seoul, was classified initially as Acinetobacter sp. strain JC1 DSM 3803. Chemotaxanomic properties, analysis of the 16s rDNA sequence, fatty acid content, and molecular Phylogenetic analysis based on rpoB gene, however, suggested that this bacterium belongs to the genus, Mycobacterium. On the basis of this evidence, it is proposed that Acinetobacter sp. strain JC1 DSM 3803 be reclassified as Mycobacterium sp. strain JC1 DSM 3803.

Isolation and Physiological Characterization of Bacillus clausii SKAL-16 Isolated from Wastewater

  • Lee, Sung-Hun;Park, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.12
    • /
    • pp.1908-1914
    • /
    • 2008
  • An alkaliphilic bacterium, Bacillus clausii SKAL-16, was isolated from soil that had been contaminated with vegetable oil. The optimal pH and general pH range for bacterial growth was 8, and 7 to 10, respectively. The bacterium could grow on tributyrin and glycerol, but could not grow on acetate and butyrate. The SKAL-16 strain excreted butyric acid during growth on tributyrin, and selectively ingested glycerol during growth on a mixture of butyric acid and glycerol. The SKAL-16 generated intracellular lipase, but did not produce esterase and extracellular lipase. The DNA fragment amplified with the chromosomal DNA of SKAL-16 and primers designed on the basis of the esterase-coding gene of Bacillus clausii KSM-KI6 was not identical with the esterase-coding gene contained in the GenBank database. Pyruvate dehydrogenase, isocitrate dehydrogenase, and malate dehydrogenase activities were detected in the cell-free extract (crude enzyme).

Isolation and identification of Exo-Inulinase Producing Bacterium and Optimization of the Enzyme Production (Exo-inulinase 생산 균주의 분리ㆍ동정 및 효소 생산의 최적화)

  • 김병우;이경희
    • Journal of Life Science
    • /
    • v.9 no.1
    • /
    • pp.22-28
    • /
    • 1999
  • A bacterium producing exo-inulinase was isolated from soil and identified Pseudomonas sp. and named as Pseudomonas sp. NO5. The optimal culture conditions for the efficient production of exo-inulinase from Pseudomonas sp. NO5 were obtained by cultivating with the medium 1$\%$ sucrose, 0.5$\%$ yeast extract, 0.5$\%$ $(NH_4)_2$$HPO_4$, 0.05$\%$ $MgSO_4$$7H_2$0, 0.001$\%$ and $FeSO_4$$7H_2$0 at $37^{\circ}C$ in initial pH 7.0 for 20 hours. The enzyme was induced maximally in the presence of sucrose or inulin at early stationary phase about 20 hour after cultivation.

  • PDF