Browse > Article
http://dx.doi.org/10.4014/jmb.1108.08089

Growth Response of Avena sativa in Amino-Acids-Rich Soils Converted from Phenol-Contaminated Soils by Corynebacterium glutamicum  

Lee, Soo-Youn (Department of Bioprocess Engineering, Chonbuk National University)
Kim, Bit-Na (Graduate School of Semiconductor and Chemical Engineering, Chonbuk National University)
Choi, Yong-Woo (Fuel Cell Research Center, Korea Institute of Energy Research)
Yoo, Kye-Sang (Department of Chemical Engineering, Seoul National University of Science and Technology)
Kim, Yang-Hoon (Department of Microbiology, Chungbuk National University)
Min, Ji-Ho (Department of Bioprocess Engineering, Chonbuk National University)
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.4, 2012 , pp. 541-546 More about this Journal
Abstract
The biodegradation of phenol in laboratory-contaminated soil was investigated using the Gram-positive soil bacterium Corynebacterium glutamicum. This study showed that the phenol degradation caused by C. glutamicum was greatly enhanced by the addition of 1% yeast extract. From the toxicity test using Daphnia magna, the soil did not exhibit any hazardous effects after the phenol was removed using C. glutamicum. Additionally, the treatment of the phenol-contaminated soils with C. glutamicum increased various soil amino acid compositions, such as glycine, threonine, isoleucine, alanine, valine, leucine, tyrosine, and phenylalanine. This phenomenon induced an increase in the seed germination rate and the root elongation of Avena sativa (oat). This probably reflects that increased soil amino acid composition due to C. glutamicum treatment strengthens the plant roots. Therefore, the phenol-contaminated soil was effectively converted through increased soil amino acid composition, and additionally, the phenol in the soil environment was biodegraded by C. glutamicum.
Keywords
Corynebacterium glutamicum; bioavailability of phenol; Daphnia magna; Avena sativa; amino acids;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Peng, R.-H., A.-S. Xiong, Y. Xue, X.-Y. Fu, F. Gao, W. Zhao, et al. 2008. Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol. Rev. 32: 927-955.   DOI   ScienceOn
2 Qi, S.-W., M. T. Chaudhry, Y. Zhang, B. Meng, Y. Huang, K. K. Zhao, et al. 2007. Comparative proteomes of Corynebacterium glutamicum grown on aromatic compounds revealed novel proteins involved in aromatic degradation and a clear link between aromatic catabolism and gluconeogenesis via fructose-1,6-bisphosphatase. Proteomics 7: 3775-3787.   DOI   ScienceOn
3 Sambrook, J., E. F. Fritsch, and T. Maniatis. 2001. Molecular Cloning: A Laboratory Manual, 3 Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
4 Seginer, I. 2003. A dynamic model for nitrogen-stressed lettuce. Ann. Bot. 91: 623-635.   DOI   ScienceOn
5 Shen, X.-H., Y. Huang, and S.-J. Liu. 2005. Genomic analysis and identification of catabolic pathways for aromatic compounds in Corynebacterium glutamicum. Microbes Environ. 20: 160-167.   DOI   ScienceOn
6 Soares, A. A., J. T. Albergaria, V. F. Domingoues, M. M. Alvim-Ferraz, and C. Delerue-Mato. 2010. Remediation of soils combining soil vapor extraction and bioremediation: Benzene. Chemosphere 80: 823-828.   DOI   ScienceOn
7 Tam, L. T., C. Eymann, D. Albrecht, R. Cietmann, F. Schauer, M. Hecker, and H. Antelmann. 2006. Differential gene expression in response to phenol and catechol reveals different metabolic activities for the degradation of aromatic compounds in Bacillus subtilis. Environ. Microbiol. 8: 1408-1427.   DOI   ScienceOn
8 Tremaine, J. H. and J. J. Miller. 2006. Effect of yeast extract, peptone, and certain nitrogen compounds on sporulation of Saccharomyces cerevisiae. Mycopathol. Mycol. Appl. 7: 241-1427.
9 Ahamad, P. Y. A. and A. A. M. Kunhi. 2011. Enhanced degradation of phenol by Pseudomonas sp. CP4 entrapped in agar and calcium alginate beads in batch and continuous processes. Biodegradation 22: 253-265.   DOI   ScienceOn
10 Bergauer, P., P.-A. Fonteyne, N. Nolard, F. Schinner, and R. Margesin. 2005. Biodegradation of phenol and phenol-related compounds by psychrophilic and cold-tolerant alpine yeasts. Chemosphere 59: 909-918.   DOI   ScienceOn
11 Chang, L. W., J. R. Meier, and M. K. Smith. 1997. Application of plant and earthworm bioassays to evaluate remediation of a lead-contaminated soil. Arch. Environ. Contam. Toxicol. 32: 166-171.   DOI   ScienceOn
12 Coniglio, M. S., V. D. Busto, P. S. Gonzalez, M. I. Medina, S. Milrad, and E. Agostini. 2008. Application of Brassica napus hairy root cultures for phenol removal. Chemosphere 72: 1035-1042.   DOI   ScienceOn
13 Eggeling, L. and H. Sahm. 2003. New ubiquitous translocators: Amino acid export by Corynebacterium glutamicum and Escherichia coli. Arch. Microbiol. 180: 155-160.   DOI   ScienceOn
14 Freeman, J. L., M. W. Persans, K. Nieman, C. Albrecht, W. Peer, I. J. Pickering, and D. E. Salt. 2004. Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell 16: 2176-2191.   DOI   ScienceOn
15 Kim, J. M., N. T. Le, B. S. Chung, J. H. Park, J.-W. Bae, E. L. Madsen, and C. O. Jeon. 2008. Influence of soil components on the biodegradation of benzene, toluene, ethylbenzene, and o-, m- and p-xylenes by the newly isolated bacterium Pseudoxanthomonas spadix BD-a59. Appl. Environ. Microbiol. 74: 7313-7320.   DOI   ScienceOn
16 Watanabe, K., H. Futamata, and S. Harayama. 2002. Understanding the diversity in catabolic potential of microorganisms for the development of bioremediation strategies. Antonie Van Leeuwenhoek 81: 655-663.   DOI   ScienceOn
17 Wise, A. A. and C. R. Kuske. 2000. Generation of novel bacterial regulatory proteins that detect priority pollutant phenols. Appl. Environ. Microbiol. 66: 163-169.   DOI   ScienceOn
18 Zhang, S., F. Hu, H. Li, and X. Li. 2009. Influence of earthworm mucus and amino acids on tomato seedling growth and cadmium accumulation. Environ. Pollut. 157: 2737-2742.   DOI   ScienceOn
19 Hatzinger, P. B., K. McClay, S. Vainberg, M. Tugusheva, C. W. Condee, and R. J. Steffan. 2001. Biodegradation of methyl tertbutyl ether by a pure bacterial culture. Appl. Environ. Microbiol. 67: 5601-5607.   DOI   ScienceOn
20 Huser, A. T., A. Becker, I. Brune, M. Dondrup, J. Kalinowski, J. Plassmeier, et al. 2003. Development of a Corynebacterium glutamicum DNA microarray and validation by genomic-wide expression profiling during growth with propionate as carbon source. J. Biotechnol. 106: 269-286.   DOI   ScienceOn
21 Lee, S. Y., B.-N. Kim, J.-H. Han, S.-T. Chang, Y.-W. Choi, Y.-H. Kim, and J. Min. 2010. Treatment of phenol-contaminated soil by Corynebacterium glutamicum and toxicity removal evaluation. J. Hazard. Mater. 182: 937-940.   DOI   ScienceOn
22 Lee, S. Y., Y.-H. Kim, and J. Min. 2010. Conversion of phenol to glutamate and proline in Corynebacterium glutamicum is regulated by transcriptional regulator ArgR. Appl. Microbiol. Biotechnol. 85: 713-720.   DOI   ScienceOn
23 Lee, S. Y., T.-H. Le, S.-T. Chang, Y.-W. Choi, Y.-H. Kim, and J. Min. 2010. Utilization of phenol and naphthalene affects synthesis of various amino acids in Corynebacterium glutamicum. Curr. Microbiol. 61: 596-600.   DOI   ScienceOn
24 Park, J. Y., J. W. Hong, and G. M. Gadd. 2009. Phenol degradation by Fusarium oxysporum GJ4 is affected by toxic catalytic polymerization mediated by copper oxide. Chemosphere 75: 765-771.   DOI   ScienceOn