• Title/Summary/Keyword: software testing

Search Result 1,291, Processing Time 0.033 seconds

Field Applicability Study of Hull Crack Detection Based on Artificial Intelligence (인공지능 기반 선체 균열 탐지 현장 적용성 연구)

  • Song, Sang-ho;Lee, Gap-heon;Han, Ki-min;Jang, Hwa-sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.4
    • /
    • pp.192-199
    • /
    • 2022
  • With the advent of autonomous ships, it is emerging as one of the very important issues not only to operate with a minimum crew or unmanned ships, but also to secure the safety of ships to prevent marine accidents. On-site inspection of the hull is mainly performed by the inspector's visual inspection, and video information is recorded using a small camera if necessary. However, due to the shortage of inspection personnel, time and space constraints, and the pandemic situation, the necessity of introducing an automated inspection system using artificial intelligence and remote inspection is becoming more important. Furthermore, research on hardware and software that enables the automated inspection system to operate normally even under the harsh environmental conditions of a ship is absolutely necessary. For automated inspection systems, it is important to review artificial intelligence technologies and equipment that can perform a variety of hull failure detection and classification. To address this, it is important to classify the hull failure. Based on various guidelines and expert opinions, we divided them into 6 types(Crack, Corrosion, Pitting, Deformation, Indent, Others). It was decided to apply object detection technology to cracks of hull failure. After that, YOLOv5 was decided as an artificial intelligence model suitable for survey and a common hull crack dataset was trained. Based on the performance results, it aims to present the possibility of applying artificial intelligence in the field by determining and testing the equipment required for survey.

An R package UnifiedDoseFinding for continuous and ordinal outcomes in Phase I dose-finding trials

  • Pan, Haitao;Mu, Rongji;Hsu, Chia-Wei;Zhou, Shouhao
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.4
    • /
    • pp.421-439
    • /
    • 2022
  • Phase I dose-finding trials are essential in drug development. By finding the maximum tolerated dose (MTD) of a new drug or treatment, a Phase I trial establishes the recommended doses for later-phase testing. The primary toxicity endpoint of interest is often a binary variable, which describes an event of a patient who experiences dose-limiting toxicity. However, there is a growing interest in dose-finding studies regarding non-binary outcomes, defined by either the weighted sum of rates of various toxicity grades or a continuous outcome. Although several novel methods have been proposed in the literature, accessible software is still lacking to implement these methods. This study introduces a newly developed R package, UnifiedDoseFinding, which implements three phase I dose-finding methods with non-binary outcomes (Quasi- and Robust Quasi-CRM designs by Yuan et al. (2007) and Pan et al. (2014), gBOIN design by Mu et al. (2019), and by a method by Ivanova and Kim (2009)). For each of the methods, UnifiedDoseFinding provides corresponding functions that begin with next that determines the dose for the next cohort of patients, select, which selects the MTD defined by the non-binary toxicity endpoint when the trial is completed, and get oc, which obtains the operating characteristics. Three real examples are provided to help practitioners use these methods. The R package UnifiedDoseFinding, which is accessible in R CRAN, provides a user-friendly tool to facilitate the implementation of innovative dose-finding studies with nonbinary outcomes.

3D Vision Implementation for Robotic Handling System of Automotive Parts (자동차 부품의 로봇 처리 시스템을 위한 3D 비전 구현)

  • Nam, Ji Hun;Yang, Won Ock;Park, Su Hyeon;Kim, Nam Guk;Song, Chul Ki;Lee, Ho Seong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.4
    • /
    • pp.60-69
    • /
    • 2022
  • To keep pace with Industry 4.0, it is imperative for companies to redesign their working environments by adopting robotic automation systems. Automation lines are facilitating the latest cutting-edge technologies, such as 3D vision and industrial robots, to outdo competitors by reducing costs. Considering the nature of the manufacturing industry, a time-saving workflow and smooth linkwork between processes is vital. At Dellics, without any additional new installation in the automation lines, only a few improvements to the working process could raise productivity. Three requirements are the development of gripping technology by utilizing a 3D vision system for the recognition of the material shape and location, research on lighting projectors to target long distances and high illumination, and testing of algorithms/software to improve measurement accuracy and identify products. With some of the functional requisites mentioned above, improved robotic automation systems should provide an improved working environment to maximize overall production efficiency. In this article, the ways in which such a system can become the groundwork for establishing an unmanned working infrastructure are discussed.

Ustekinumab pharmacokinetics after subcutaneous administration in swine model

  • Grabowski, Tomasz;Burmanczuk, Artur;Derlacz, Rafal;Stefaniak, Tadeusz;Rzasa, Anna;Borkowski, Jacek
    • Journal of Veterinary Science
    • /
    • v.22 no.5
    • /
    • pp.47.1-47.10
    • /
    • 2021
  • Background: Due to multiple similarities in the structure and physiology of human and pig skin, the pig model is extremely useful for biological drug testing after subcutaneous administration. Knowledge of the differences between subcutaneous injection sites could have a significant impact on the absorption phase and pharmacokinetic profiles of biological drugs. Objectives: This study aimed to analyze the impact of administration site on pharmacokinetics and selected biochemical and hematological parameters after a single subcutaneous administration of ustekinumab in pigs. Drug concentrations in blood plasma were analyzed by enzyme-linked immunosorbent assay. Pharmacokinetic analyses were performed based on raw data using Phoenix WinNonlin 8.1 software and ThothPro v 4.1. Methods: The study included 12 healthy, female, large white piglets. Each group received a single dose of ustekinumab given as a 1 mg/kg subcutaneous injection into the internal part of the inguinal fold or the external part of the inguinal fold. Results: The differences in absorption rate between the internal and external parts of the inguinal fold were not significant. However, the time of maximal concentration, clearance, area under the curve calculated between zero and mean residence time and mean residence time between groups were substantially different (p > 0.05). The relative bioavailability after administration of ustekinumab into the external part of the inguinal fold was 40.36% lower than after administration of ustekinumab into the internal part of the inguinal fold. Conclusions: Healthy breeding pigs are a relevant model to study the pharmacokinetic profile of subcutaneously administered ustekinumab.

Preliminary design and assessment of a heat pipe residual heat removal system for the reactor driven subcritical facility

  • Zhang, Wenwen;Sun, Kaichao;Wang, Chenglong;Zhang, Dalin;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.3879-3891
    • /
    • 2021
  • A heat pipe residual heat removal system is proposed to be incorporated into the reactor driven subcritical (RDS) facility, which has been proposed by MIT Nuclear Reactor Laboratory for testing and demonstrating the Fluoride-salt-cooled High-temperature Reactor (FHR). It aims to reduce the risk of the system operation after the shutdown of the facility. One of the main components of the system is an air-cooled heat pipe heat exchanger. The alkali-metal high-temperature heat pipe was designed to meet the operation temperature and residual heat removal requirement of the facility. The heat pipe model developed in the previous work was adopted to simulate the designed heat pipe and assess the heat transport capability. 3D numerical simulation of the subcritical facility active zone was performed by the commercial CFD software STAR CCM + to investigate the operation characteristics of this proposed system. The thermal resistance network of the heat pipe was built and incorporated into the CFD model. The nominal condition, partial loss of air flow accident and partial heat pipe failure accident were simulated and analyzed. The results show that the residual heat removal system can provide sufficient cooling of the subcritical facility with a remarkable safety margin. The heat pipe can work under the recommended operation temperature range and the heat flux is below all thermal limits. The facility peak temperature is also lower than the safety limits.

Uniform large scale cohesionless soil sample preparation using mobile pluviator

  • Jamil, Irfan;Ahmad, Irshad;Ullah, Wali;Junaid, Muhammad;Khan, Shahid Ali
    • Geomechanics and Engineering
    • /
    • v.28 no.5
    • /
    • pp.521-529
    • /
    • 2022
  • This research work deals with the development of air pluviation method for preparing uniform sand specimens for conducting large scale laboratory testing. Simulating real field conditions and to get reliable results, air pluviation method is highly desirable. This paper presents a special technique called air pluviation or sand raining technique for achieving uniform relative density. The apparatus is accompanied by a hopper, shutters with different orifice sizes and numbers and set of sieves. Before using this apparatus, calibration curves are drawn for relative density against different height of fall (H) and shutter sizes. From these calibration curves, corresponding to the desired relative density of 60%, the shutter size of 13mm and height of fall of 457.2 mm, are selected and maintained throughout the pluviation process. The density obtained from the mobile pluviator is then verified using the Dynamic Cone Penetrometer (DCP) test where the soil is poured in the box using defined shutter size and fall height. The results obtained from the DCP test are averaged as 60±0.5 which was desirable. The mobile pluviator used in this research is also capable of obtaining relative densities up to 90%. The instrument is validated using experimental and numerical approach. In numerical study, Plaxis 3D software is used in which the soil mass is defined by 10-Node tetrahedral elements and 6-Node plate is used to simulate plate behavior in the validation phase. The results obtained from numerical approach were compared with that of experimental one which showed very close correlation.

Wind-induced mechanical energy analyses for a super high-rise and long-span transmission tower-line system

  • Zhao, Shuang;Yan, Zhitao;Savory, Eric;Zhang, Bin
    • Wind and Structures
    • /
    • v.34 no.2
    • /
    • pp.185-197
    • /
    • 2022
  • This study aimed to analyze the wind-induced mechanical energy (WME) of a proposed super high-rise and long-span transmission tower-line system (SHLTTS), which, in 2021, is the tallest tower-line system with the longest span. Anew index - the WME, accounting for the wind-induced vibration behavior of the whole system rather than the local part, was first proposed. The occurrence of the maximum WME for a transmission tower, with or without conductors, under synoptic winds, was analyzed, and the corresponding formulae were derived based on stochastic vibration theory. Some calculation data, such as the drag coefficient, dynamic parameters, windshielding areas, mass, calculation point coordinates, mode shape and influence function, derived from wind tunnel testing on reducedscale models and finite element software were used in calculating the maximum WME of the transmission tower under three cases. Then, the influence of conductors, wind speed, gradient wind height and wind yaw angle on WME components and the energy transfer relationship between substructures (transmission tower and conductor) were analyzed. The study showed that the presence of conductors increases the WME of transmission towers and changes the proportion of the mean component (MC), background component (BC) and resonant component (RC) for WME; The RC of WME is more susceptible to the wind speed change. Affected by the gradient wind height, the WME components decrease. With the RC decreasing the fastest and the MC decreasing the slowest; The WME reaches the its maximum value at the wind yaw angle of 30°. Due to the influence of three factors, namely: the long span of the conductors, the gradient wind height and the complex geometrical profile, it is important that the tower-line coupling effect, the potential for fatigue damage and the most unfavorable wind yaw angle should be given particular attention in the wind-resistant design of SHLTTSs

Performance Improvement Method of Convolutional Neural Network Using Combined Parametric Activation Functions (결합된 파라메트릭 활성함수를 이용한 합성곱 신경망의 성능 향상)

  • Ko, Young Min;Li, Peng Hang;Ko, Sun Woo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.9
    • /
    • pp.371-380
    • /
    • 2022
  • Convolutional neural networks are widely used to manipulate data arranged in a grid, such as images. A general convolutional neural network consists of a convolutional layers and a fully connected layers, and each layer contains a nonlinear activation functions. This paper proposes a combined parametric activation function to improve the performance of convolutional neural networks. The combined parametric activation function is created by adding the parametric activation functions to which parameters that convert the scale and location of the activation function are applied. Various nonlinear intervals can be created according to parameters that convert multiple scales and locations, and parameters can be learned in the direction of minimizing the loss function calculated by the given input data. As a result of testing the performance of the convolutional neural network using the combined parametric activation function on the MNIST, Fashion MNIST, CIFAR10 and CIFAR100 classification problems, it was confirmed that it had better performance than other activation functions.

Experimental and numerical studies of concrete bridge decks using ultra high-performance concrete and reinforced concrete

  • Shemirani, Alireza Bagher
    • Computers and Concrete
    • /
    • v.29 no.6
    • /
    • pp.407-418
    • /
    • 2022
  • This paper numerically investigates the effect of changes in the mechanical properties (displacement, strain, and stress) of the ultra-high-performance concrete (UHPC) without rebar and the reinforced concrete (RC) using steel re-bars. This reinforced concrete is mostly used in the concrete bridge decks. A mixture of sand, gravel, cement, water, steel fiber, superplasticizer, and micro silica was used to fabricate UHPC specimens. The extended finite element method as used in the ABAQUS software is applied for considering the mechanical properties of UHPC, RC, and ordinary concrete specimens. To calibrate the ABAQUS, some experimental tests have been carried out in the laboratory to measure the direct tensile strength of UHPC by the compressive-to-tensile load converting (CTLC) device. This device contains a concrete specimen and is mounted on a universal tensile testing apparatus. In the experiments, three types of mixed concrete were used for UHPC specimens. The tensile strength of these specimens ranges from 9.24 to 11.4 MPa, which is relatively high compared with ordinary concrete specimens, which have a tensile strength ranging from 2 to 5 MPa. In the experimental tests, the UHPC specimen of size 150×60×190 mm with a central hole of 75 mm (in diameter)×60 mm (in thickness) was specially made in the laboratory, and its direct tensile strength was measured by the CTLC device. However, the numerical simulation results for the tensile strength and failure mechanism of the UHPC were very close to those measured experimentally. From comparing the numerical and experimental results obtained in this study, it has been concluded that UHPC can be effectively used for bridge decks.

Design and Implementation of Ultra-Long-Range LoRa Communication Module (초장거리 LoRa 통신 모듈 설계 및 구현)

  • Kim, Dong-Hyun;Huh, Jun-Hwan;Lee, Chang-Hong;Kim, Kwang-Deok;Kim, Jong-Deok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.2
    • /
    • pp.230-238
    • /
    • 2022
  • Internet of Things(IoT) is a communication technology that collects information of object remotely and controls the function of object by adding a communication function to object that does not have a communication function. For the IoT, various communication technologies such as Wi-Fi, 3GPP, and Bluetooth are available, and Long Range(LoRa) is communication technologies specialized in the IoT concept. LoRa is a communication technology that support long-distance, low-power, and low-speed communication, and is suitable for collecting information generated form object in remote equipment and controlling equipment. Because of these characteristics, it is used in many application field, and various performance improvement studies are in progress. This paper intends to propose an ultra-long-range LoRa communication module that can be used in a wider range of applications. We design and implement hardware, firmware, and application software for testing to develop ultra-long-range LoRa communication modules. The implemented module will be tested in a real environment to verify its performance and to check its utilization.