• Title/Summary/Keyword: sodium salts

Search Result 267, Processing Time 0.026 seconds

Effect of Sodium-Alternative Curing Salts on Physicochemical Properties during Salami Manufacture

  • Yim, Dong-Gyun;Shin, Dong-Jin;Jo, Cheorun;Nam, Ki-Chang
    • Food Science of Animal Resources
    • /
    • v.40 no.6
    • /
    • pp.946-956
    • /
    • 2020
  • To identify the effect of sodium-alternative curing salts on the quality properties of salami through the ripening process, four salami treatments were prepared with different curing salts, T1 (-control, NaCl 1.9%), T2 (+control, NaCl 1.9%+NaNO2 0.01%), T3 (KCl 1.9%+NaNO2 0.01%), and T4 (MgCl2 1.9%+NaNO2 0.01%), under 40 days ripening conditions. Sodium-alternative salts (T3 or T4) showed characteristically different quality traits compared with T2. Especially, T3 had lower pH, water activity, volatile basic nitrogen, and lipid oxidation after 20 days of ripening period, compare with T2 or T4 (p<0.05). Sodium nitrite had critical impact on increased a* values, and T3 showed higher a* values compared with T2 or T4 (p<0.05). Sodium nitrite reduced initial growth of coliforms but sodium-alternative salts did not affect microbial growth patterns. T2-T4 containing sodium nitrite had higher content of umami nucleotide flavor compounds compared with T1, regardless of the chlorine salt species. The combined use of sodium-alternative curing salts and minimal sodium nitrite was found to be an applicable strategy on development of low sodium salami without a trade-off of the product quality.

Evaluation of Antibacterial and Therapeutic Effects of a Sodium salts Mixture against Salmonella typhimurium in Murine Salmonellosis (나트륨 염 복합조성물의 마우스 살모넬라증에 대한 항균 및 치료효과)

  • Lee, Yeo-Eun;Cha, Chun-Nam;Park, Eun-Kee;Kim, Suk;Lee, Hu-Jang
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.3
    • /
    • pp.222-226
    • /
    • 2011
  • Salmonellosis is a major bacterial zoonosis that causes self-limited enteritis to fatal infection in animals and food-borne infection and typhoid fever in humans. Multidrug-resistant strains of Salmonella spp. has increased over the last several decades and recently causes more serious problems in public health. The present study was investigated bacteriocidal effects of sodium chlorate, sodium azide, sodium cyanide, and sodium salts mixture containing sodium chlorate, sodium azide, and sodium cyanide on infection with S. typhimurium in macrophage RAW 264.7 cells, and antibacterial effects of sodium salts mixture for murine salmonellosis. In infection assay of S. typhimurium in RAW 264.7 cells, bacterial survival rates within macrophage in all treated groups was significantly reduced comparing to that of the control group with the passage of incubation time. Administration of sodium salts mixture showed a therapeutic effect for S. typhimurium infected ICR mice. The mortality of mice treated with sodium salts mixture was 70% until 12 days, while that of control mice was 100% until 9 days after S. typhimurium infection. The results of this study strongly indicate that sodium salts mixture has a potency treatment for murine salmonellosis.

Effect of High Concentrations of Sodium or Chloride Salts in Soil on the Growth of and Mineral Uptake by Tomatoes (토양에의 고농도 Na 및 Cl 염류가 토마토의 생육 및 무기성분 흡수에 미치는 영향)

  • 강경희;권기범;최영하;김회태;이한철
    • Journal of Bio-Environment Control
    • /
    • v.11 no.3
    • /
    • pp.121-126
    • /
    • 2002
  • This study was conducted to investigate the effect of high concentration of sodium salts and chlorides in soil on the growth of tomato and the uptake of minerals. The growth inhibition rates of plant height and dry weight were different depending on salts, but they were not related to the electric conductivities (EC) and acidities (pH) in the soil solution. The orders of growth inhibition were Cl, SO$_4$, CO$_3$, PO$_4$>NO$_3$ in the sodium salts series, and Na, K, Mg, NH$_4$>Ca in the chlorides. The growth inhibition rates of the sodium salts series tended to be larger than those of the chloride series. Yield was lower 30%~10% in the sodium salt and chloride series than in the control. Chlorophyll content, photosynthetic rate and stomatal conductance were lower in the sodium salts and chloride series than in the control. Mineral concentration was lower in sodium salts and chlorides than in control. The nitrate absorption was inhibited in all salts except for NaNO$_3$ and NH$_4$Cl, and specially in NaCl and Na$_2$SO$_4$ treatments of the sodium salts and in KCl treatment of chloride series. K concentration was reduced NaCl and Na$_2$SO$_4$ treatments compared with the other salts. In the sodium salt series, calcium and magnesium concentration were decreased antagonistically when sodium concentration was increased.

Effects of Various Salts on the Reheating Behavior of Retrograded Rice Starch and Cooked Rice

  • Han, Sung-Hee;Kim, Bo-Reum;Lee, Seog-Won;Rhee, Chul
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.2
    • /
    • pp.157-164
    • /
    • 2011
  • The influence of sodium salts and chlorides at various concentrations (0.05, 0.10, 0.50, and 1.00%) on the reheating behavior of retrograded rice starch and cooked rice was investigated. The degree of gelatinization of the all retrograded rice starch gels and the cooked rice containing sodium salts and chlorides increased after reheating compared to the starches without salt. Gelatinization also showed an increasing trend as the concentration of sodium salts and chlorides increased. The increase of gelatinization after reheating the samples containing sodium salts and chlorides was greater than 38.0%. The reheated retrograded rice starch and cooked rice containing $Na_3PO_4$ showed the lowest set back value and retrogradation rate constant. Among all the samples, the cooked sample containing $Na_3PO_4$ showed the highest increment of gelatinization after reheating. Also, this same sample showed the lowest retrogradation degree.

Domestic and International Trends in Technologies for Sodium Reduction (국내외 나트륨 저감 기술 동향)

  • Jung, Kwangho
    • Food Science and Industry
    • /
    • v.49 no.2
    • /
    • pp.18-24
    • /
    • 2016
  • Sodium chloride (NaCl) is a very important as one of major food ingredients in food industries. Recently, as the potential risk of adult diseases such as hypertension by overingestion of sodium, health authorities of many countries are executing policies for the reduction of sodium to suppress the overingestion of sodium by intake of NaCl. As general ways, the replacement of NaCl with either alternative salts, such as solar salts and minerals, for examples calcium, magnesium, potassium, lactic acid, and so on, and the addition of flavor enhancers were used to reduce the contents of sodium in foods. Recently, controls of particle size of sodium chloride or release point are emerging as new salt-manufacturing technologies for the sodium reduction. Upon reducing NaCl in foods it is important to develop practically adaptable technologies on the basis of the consideration of the unique functions of NaCl in foods, in particular effects on rheological characters, function as a humectant, shorten shelf life time, and so on.

Studies on the Heat Resistance of Bacterial Amylase (part 1) -Effect of Calcium and Sodium Salts- (세균(細菌) amylase 의 내열성(耐熱性)에 관(關)한 연구(硏究) (제(第) 1 보(報)) -Calcium 및 Sodium 염(鹽)의 영향 (影響)에 대(對하)여-)

  • Park, Yoon-Choong;Lee, Han-Chang;Lee, Suk-Kun
    • Applied Biological Chemistry
    • /
    • v.9
    • /
    • pp.105-109
    • /
    • 1968
  • 1. The optimum temperature of amylase activity produced by Bacillus subtilis var. M-181 was $50^{\circ}C$, and its activity was lost by heating to $70^{\circ}C$, 10 minutes without addition of salts. 2. Addition of sodium salts effects for heat resistance of the amylase affected differently by kinds of the salt. Among organic sodium salts monosodium glutamate, sodium acetate as sodium propionate affected on heat resistance of the amylase relatively better effects. 3. Addition of 10mg of sodium sulfate per ml of enzyme solution $({D_{30}}^{40^{\circ}}\;1250/ml)$, showed maximum affect on the neat resistance. 4. Coexistence of calcium acetate and sodium acetate, affected on the hear resistance, remarkably.

  • PDF

Transmucosal Delivery of Luteinizing Hormone-Releasing Hormone: Effect of Medium Chain Fatty Acid Salts on Stabilization of LHRH in Mucosal Homogenates in vitro. (황체호르몬 유리호르몬의 경점막 수송: 가토 점막균질액 중에서 중쇄지방산염의 LHRH에 대한 안정화 효과)

  • Han, Kun;Park, Jeong-Sook
    • YAKHAK HOEJI
    • /
    • v.38 no.1
    • /
    • pp.67-77
    • /
    • 1994
  • In order to investigate the feasibility of transmucosal delivery of the model peptide, LHRH, metabolism of LHRH and inhibition effect of medium chain fatty acid salts were studied in rabbit mucosal homogenate. LHRH incubated in homogenates of rectal(RE), nasal(NA) and vaginal(VA) mucosa were assayed by HPLC. Five to six degradation products of LHRH were deterted and the degradation of LHRH$(500\;{\mu}g/ml)$ followed the first order kinetics. The main degradation products were found as $LHRH^{1-5}(M-I)$, $LHRH^{1-3}(M-II)$ and $LHRH^{1-6}(M-III)$ by the method of amino acid analysis. The half-lives of LHRH in the mucosal homogenates were found to be less than 20 min at protein concentration of 2.5 mg/ml with the order of VA>NA>RE mucosal homogenate. Medium chain fatty acid salts such as sodium caprylate $(C_8)$, sodium caprate $(C_{10})$ and sodium laurate $(C_{12})$ at the concentration of $0.5%{\sim}1.0%$ inhibit the proteolysis of LHRH significantly. The addition of sodium laurate(0.5%) into the NA and VA mucosal homogenates protected LHRH completely from the degradation.

  • PDF

Immobilization of sodium-salt wastes containing simulated 137Cs by volcanic ash-based ceramics with different Si/Al molar ratios

  • Sun, Xiao-Wen;Liu, Li-Ke;Chen, Song
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.3952-3965
    • /
    • 2021
  • In this study, volcanic ash was used as raw material to prepare waste forms with different silicon/aluminum (Si/Al) molar ratios to immobilize sodium-salt waste (SSW) containing simulated 137Cs. Effects of Si/Al molar ratios (3:1 and 2:1) and sodium salts on sintering behavior of waste forms and immobilization mechanism of Cs+ were investigated. Results indicated that the main mineral phase of sintered waste-form matrixes was albite, and the formation of major phases was found to depend on Si/Al molar ratios. Si/Al molar ratio of 2 was favorable for the formation of pollucite, and the formation and crystallization of mineral phases were also decided based on physicochemical characteristics of sodium salts. Furthermore, product consistency test results indicated that the immobilization of Cs+ was related to Si/Al molar ratio, types of sodium salts, and glassy phase. Waste forms with Si/Al molar ratio of 2 exhibited better ability to immobilize Cs+, whereas the influence of sodium salts and glassy phases on the immobilization of SSW showed more complicated relationship. In waste forms with Si/Al molar ratio of 2, Cs+ leaching concentrations of samples containing Na2B4O7·10H2O and NaOH were low. Na2B4O7·10H2O easily transformed into liquid phase during sintering to consequently achieve low temperature liquid-phase sintering, which is beneficial to avoid the volatilization of Cs+ at high temperature. Results clearly reveal that waste forms with Si/Al molar ratio of 2 and containing Na2B4O7·10H2O show excellent immobilization of Cs+.

Effects of Salts on the Hydration of $\alpha$-Calcium Sulfate Hemihydrate ($\alpha$형 반수석고의 수화에 미치는 염류의 영향)

  • 최상흘;이구종;홍성윤;이석곤
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.5
    • /
    • pp.449-454
    • /
    • 1988
  • The effects of salts which was used as a catalysis in formation of $\alpha$-calciumusulfate hemihydrate from dicalcium sulfate hydrate were investigated on the hydration of $\alpha$-calciumsulfate hemihydrate. The hydration of $\alpha$-calciumsulfate hemihydrate was studied by the measurements of crystalline water, heat evolution. Also the hydrates were analyzed by XRD, DSC and SEM. The promotive effect each salts on the hydration was as follows: NaCl>NH4Cl>NaNO3>NH4NO3, and the hydration rate was accelerated with concentration of salts. The effect of Al2(SO4)3 and potassium sodium tartrate on the hydration was slmilar to water, whereas sodium succinate and gelatin retarded the hydration in comparision with water. These salts affected the hydration time but total heat evoution was similar.

  • PDF

Growth Inhibitory Effects of Chloride Salts and Organic Acid Salts Against Food-Borne Microorganisms (Chloride염 및 유기산 칼슘염의 식중독 미생물에 대한 증식 억제 효과)

  • 이나영;김용석;신동화
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.8
    • /
    • pp.1233-1238
    • /
    • 2003
  • The growth inhibitory effects of chloride salts and organic acid salts against six food-borne microorganisms (Bacillus cereus ATCC 11778, Escherichia coli O157:H7 ATCC 43894, Listeria monocytogenes ATCC 19111, Salmonella Typhimurium ATCC 14028, Staphylococcus aureus ATCC 25923, Vibrio parahaemolyticus ATCC 17802) were determined using Bioscreen C in broth medium. The growth inhibitory concentrations of sodium chloride and potassium chloride on B. cereus were 7 and 9%, respectively. E. coli O157:H7 and S. aureus were inhibited by treatment of 3% calcium chloride. Magnesium chloride showed growth inhibitory effect on B. cereus, S. Typhimurium, and S. aureus at 5%. The order of growth inhibition effects by organic acid salts was calcium propionate>calcium acetate>calcium lactate. Calcium chloride (3%) with 0.01% lactic acid showed strong inhibition on the growth of S. Typhimurium and exhibited stronger growth inhibition than calcium chloride alone (5%). We concluded that calcium chloride and calcium propionate had strong growth inhibitory activities and that calcium chloride and sodium chloride in combination with lactic acid had stronger inhibitory activities than that of chloride salts alone.