• 제목/요약/키워드: sodium metasilicate

검색결과 12건 처리시간 0.029초

샥스핀 가공 중 사용된 메타규산나트륨 분석 (Analytical Method to Quantify Sodium Metasilicate in Shark Fins)

  • 박세종;장수진;최재천;김미혜
    • 한국식품과학회지
    • /
    • 제47권2호
    • /
    • pp.145-148
    • /
    • 2015
  • 메타규산나트륨은 우리나라 식품첨가물공전에 등록되어 있는 품목으로 식용유지류의 여과보조제의 목적 이외에는 사용할 수 없으며, 최종식품 완성 전에 제거하도록 규정되어 있다. 그러나 최근 샥스핀 등 수산물에 중량 증량의 목적으로 메타규산나트륨을 불법 사용하는 사례가 지속적으로 발생함에 따라 메타규산나트륨의 사용 여부를 판별할 수 있는 분석법의 필요성이 대두되고 있다. 그러나 메타규산나트륨의 수용액은 강알칼리성용액으로 식품에 첨가되면 해리되어 그 자체로 분석할 수 없으며, 규소 양의 측정을 통해 간접적인 방법으로 추정할 경우 시료 자체에 천연적으로 존재하는 규소와 구분해야 하는 어려움이 있다. 따라서 본 연구에서는 메타규산나트륨의 첨가 여부를 판별하기 위한 기초 자료 확보를 위해 메타규산나트륨 수용액에 가공되지 않은 상어지느러미를 침지하여 중량의 증가, pH 및 규소 함량 변화를 측정하였고, 이를 모니터링 결과와 비교하였다. 그러나 Robberecht 등(7)의 연구결과 6종의 어류에서 규소가 1.77-84.19 mg/kg의 범위에서 검출된 결과에서 알 수 있듯이, 수산물의 종류와 개체 간에 규소 함량의 편차가 크게 나타날 수 있기 때문에 향후 샥스핀의 규소 함량 모니터링을 지속적으로 수행하여 데이터베이스를 좀 더 보강할 필요가 있을 것으로 판단되며, 그 이후에 대조군과 pH, 수분 및 규소 함량 비교를 통해 메타규산나트륨 사용여부를 유추해 볼 수 있을 것으로 생각된다.

흙의 粒度分捕가 石灰混合土의 强度特性에 미치는 影響 (Effects of Grain Size Distribution in Soil on the Strength Characteristics of Lime-Soil Mixtures)

  • 조성정;강예묵
    • 한국농공학회지
    • /
    • 제27권2호
    • /
    • pp.57-71
    • /
    • 1985
  • The characteristics of compaction and unconfined compressive strength were investigated by mixing with lime to all soils adjusted by given percentages of two kinds of clays to sand to obtain the most effective distribution of grain size and the optimum lime content for soil stabilization. In addition, unconfined compressive strength and durability tested by adding of sodium metasilicate, sodium sulfate, sodium carbonate, sodium gydroxide and magnesium oxide to lime-soil mixture mixed with 8 percent lime to adjusted soil having the mixing percentage of 60 percent of cohesive black clay and 40 percent of sand by weight to get the effect and the optimum content of chemicals. The results obtained were as follows; 1.With the addition of more lime, the optimum moisture content was increased, and the maximum dry density was decreased, whereas the more the amount of clay and the less was the maximum drt density. 2. In the soil having more fine grain size the unconfined compressive strength was larger in the earlier stage of curing period, in accordance with the longer period, the mixing percentages of sand to clay showing the maximum unconfined compressive strength, on the basis of 28-day strength, were 60% : 40% (black clay) and 40% : 60% (brown clay) respectively. 3. The reason why the soil adjusted with black clay was remarkably bigger in the unconfined compressive strength than ones adjusted with brown clay for all specimen of lime-soil mixture was the difference in the kind of clay, the amount of chemical compositions the value of pH. Black clay was mainly composed of halloysite that reacted with lime satisfactorily, whereas the main composition of brown clay was kaolinite that was less effect in the enhance of unconfined compressive strength. Also the difference of unconfined compressive strength was because black clay was larger in the amount of composition of calcium oxide and magnesium oxide in the value of pH affecting directly on the unconfined compressive strength of lime-soil mixture than brown clay. 4. In the lime-soil mixture mixed with 8 percent of lime to soil that mixing percentage of sand to black clay was 60% : 40%, on the standard of 7-day strength, the effect of chemical was arranged in the order of magnesium oxide, sodium carbonate, sodium sulfate, sodium hydroxide and sodium metasilicate. 5. The optimum amount of chemical being applicable to the maximum unconfined compressive strength of lime-chemical-soil mixture was 1 percent by weight for air dry soil in the case of adding sodium carbonated and 0.75 percent on sodium hydroxide, the unconfined compressive strength was increased continuously with increase of the amount of chemical up to 2 percent of chemical content is the lime-chemical-soil mixture added sodium metasilicate, sodium sulfate and magnesium oxide. 6. It was considered that the chemical played and accelerant role of early revelation of strength because the rate of increase of unconfined compressive strength of all of lime-chemical-soil mixtures was largest on the 7-day cured specimen. 7. The effect of test on freezing and thawing after adding suitable amount of chemical on the lime-soil mixture mixed with 8 percent of lime to soil that mixing percentage of sand to black clay was 60% : 40% was arranged in the order of magnesium oxide, sodium carbonate, sodium sulfate, sodium metasilicate and sodium hydroxide.

  • PDF

세척조건이 직물에의 Calcium 침착에 미치는 영향 (The Effects of Laundering Conditions on Calcium Deposition on the Fabric)

  • 문영애;강혜원;김성련
    • 한국의류학회지
    • /
    • 제5권1호
    • /
    • pp.9-14
    • /
    • 1981
  • The influence of laundering conditions on calcium deposition on the fabric was studied by repeated laundering the cotton fabric with soap in the hard water of 200 P.P.M. $CaCO_3$. The experimental variables were: 1) soap concentrations ($0.06\%$, $0.13\%$, $0.25\%$), 2) water contents in the fabric after hydroextraction. ($65\%$, $150\%$, $315\%$), 3) builders (Na-EDTA, sodium carbonate, sodium metasilicate), 4) washing cycle (5, 10, 15, 20 cycles). The fabric was washed for 15 minutes at $23\pm1^{\circ}C$ in a washing machine (Model; Gold Star Wp-2005) under the similar conditions with those of home laundering, and rinsed 5 times for 5 minutes. The amount of calcium deposits on the fabric was determined by the EDTA-Back titration method described by Wasserman and Basch. Results of this study were follows: 1) The amount of calcium deposits on the fabric increased with increasing wash cycles. 2) During the rinsing process, residual calcium content on the fabric increased with water content in the fabric after hydroextraction. 3) The amount of calcium deposits on the fabric decreased with the increasing soap concentration above the equivalent amount of calcium ion content in the water. 4) Sequestering agents and alkaline builders influenced the amount of calcium deposits on the fabric. The amount of calcium deposits on the fabric was in the order of sodium metasilicate, sodium carbonate, nonbuilder, and EDTA.

  • PDF

NH4OH용액이 반도체 소자용 구리 박막 표면에 미치는 영향 (Cleaning Effects by NH4OH Solution on Surface of Cu Film for Semiconductor Devices)

  • 이연승;노상수;나사균
    • 한국재료학회지
    • /
    • 제22권9호
    • /
    • pp.459-464
    • /
    • 2012
  • We investigated cleaning effects using $NH_4OH$ solution on the surface of Cu film. A 20 nm Cu film was deposited on Ti / p-Si (100) by sputter deposition and was exposed to air for growth of the native Cu oxide. In order to remove the Cu native oxide, an $NH_4OH$ cleaning process with and without TS-40A pre-treatment was carried out. After the $NH_4OH$ cleaning without TS-40A pretreatment, the sheet resistance Rs of the Cu film and the surface morphology changed slightly(${\Delta}Rs:{\sim}10m{\Omega}/sq.$). On the other hand, after $NH_4OH$ cleaning with TS-40A pretreatment, the Rs of the Cu film changed abruptly (${\Delta}Rs:till{\sim}700m{\Omega}/sq.$); in addition, cracks showed on the surface of the Cu film. According to XPS results, Si ingredient was detected on the surface of all Cu films pretreated with TS-40A. This Si ingredient(a kind of silicate) may result from the TS-40A solution, because sodium metasilicate is included in TS-40A as an alkaline degreasing agent. Finally, we found that the $NH_4OH$ cleaning process without pretreatment using an alkaline cleanser containing a silicate ingredient is more useful at removing Cu oxides on Cu film. In addition, we found that in the $NH_4OH$ cleaning process, an alkaline cleanser like Metex TS-40A, containing sodium metasilicate, can cause cracks on the surface of Cu film.

중금속이온제거를 위한 입자형 적니흡착제의 제조 (Synthesis of Pellet-Type Red Mud Adsorbents for Removal of Heavy Metal Ions)

  • 김정식;한상원;황인국;배재흠;최우진
    • 자원리싸이클링
    • /
    • 제9권1호
    • /
    • pp.44-51
    • /
    • 2000
  • 보오크사이트를 원료로 하여 $Al(OH)_{3}/Al_2O_3$ 를 생산하는 공정에서 발생되는 부산물인 적니를 물리.화학적으로 처리하여 중금속 이온 제거용 흡착제로 재활용하고자 하였으며, 산업적으로 적용이 쉽도록 입자형 적니흡착제를 제조하였다. 이를 위하여 적니를 주성부능로 하고 몇 가지 첨가물의 함량과 소결온도를 변화시키며 실험하여 입자형 적니흡착제를 제조하였다. 실험결과, 적니 96.0wt%에 polypropylene 2.5wt%, sodium metasilicate 10wt%, fly ash 0.5 wt%를 첨가하여 $1200^{\circ}C$ 에서 30분간 소결시켜 제조하였을 때 납 이온에 대해 가장 높은 흡착제거율을 나타내었다. 그리고 입자형 적니흡착제의 제조방법에 따라 분쇄형 적나흡착제와 비드형 적니흡착제로 구분하여 이들의 중금속 흡탈착성능을 실험하였다. 그 결과 분쇄형 적니흡착제는 비드형 적니흡착제보다 흡착제거율과 탈착율이 모두 우수하였으며 분발형 적니흡착제와 마찬가지로 $Pb^{2+}$ 이온의 흡착제거율이 우수함을 알 수 있었다.

  • PDF

통계적 실험계획법을 이용한 제올라이트 4A 합성 최적화 (Optimization of Synthesis Process for Zeolite 4A Using Statistical Experimental Design)

  • 윤미희;유계상
    • 공업화학
    • /
    • 제28권3호
    • /
    • pp.286-289
    • /
    • 2017
  • 통계적 실험계획법을 이용하여 나노입자 합성 공정의 최적화 방법론을 제시하기 위하여 대상 물질로 제올라이트 4A의 합성을 수행하였다. 실리콘 전구체인 sodium metasilicate (SMS)의 농도를 조절하여 합성한 제올라이트 4A를 XRD, SEM 및 질소흡착법으로 특성분석 하였다. 특히 XRD 분석으로 결정한 결정도로 제올라이트 4A의 합성결과를 판단할 수 있었다. 실험계획법 중 일반요인분석을 이용하여 반응장치, 반응온도 및 반응시간에 따른 주효과도 및 교호작용을 분석하였다. 또한 반응표면분석법을 통하여 결정도 최대치를 가지는 제올라이트 4A를 합성할 수 있는 최적의 조건으로 계산하였다. 구체적으로는 autoclave를 사용하고 반응시간 3 h 및 반응온도 $110^{\circ}C$의 반응조건이 제시되었다. 더욱이 실리콘 전구체로 Ludox를 사용하는 조건하에서, 다양한 결정화도를 가지는 제올라이트 4A에 대한 최적의 합성조건을 모든 범위에서 대하여 표면도와 등고선도를 이용하여 제시하였다.

지오폴리머 기술에 의한 포스테라이트 분말의 저온합성 (Low Temperature Synthesis of Forsterite Powders by the Geopolymer Technique)

  • 손세구;이지현;이상훈;김영도
    • 한국세라믹학회지
    • /
    • 제46권3호
    • /
    • pp.242-248
    • /
    • 2009
  • Forsterite is a crystalline magnesium silicate with chemical formula $Mg_2SiO_4$, which has extremely low electrical conductivity that makes it an ideal substrate material for electronics. In this study, forsterite precursors were synthesized with magnesium silicate gels from the mixture of magnesium nitrate solution and various sodium silicate solution by the geopolymer technique. Precursors and heattreated powders were characterized by thermogravimetrical differential thermal analyzer(TG-DTA), X-ray diffractometer(XRD), scanning electron microscopy(SEM), Si magic angle spinning nuclear magnetic resonance(MAS-NMR), transmission electron microscopy(TEM). As the result of analysis about the crystallization behavior by DTA, the synthesized precursors were crystallized in the temperature range of $700^{\circ}C$ to $900^{\circ}C$. The XRD results showed that the gel composition began to crystallize at various temperature. Also, it was found that the sodium orthosilicate based precursors(named as 'FO') began to crystallize at above $550^{\circ}C$. The FO peaks were much stronger than sodium silicate solution based precursors(named as 'FW'), sodium metasilicate based precursors(named as 'FM') at $800^{\circ}C$. TEM investigation revealed that the 100nm particle sized sample was obtained from FO by heating up to $800^{\circ}C$.

W/O형 에멀젼을 이용한 구형 실리카 입자의 특성제어(제1보);교반속도에 따른 실리카 입자의 형태 및 입도 분석 (The Characteristic Control of Spherical Silica Particle Using by W/O Type Emulsion(I);The analysis of Particle shape and size distribution of silica as a function mixing speed)

  • 박흥조;김상춘
    • 한국응용과학기술학회지
    • /
    • 제23권1호
    • /
    • pp.1-11
    • /
    • 2006
  • The W/O emulsion was formed by mixing hydrophobic nonion surfactants of span 80 and tween 60 with kerosine, and by adding sodium silicate aqueous solution. Precipitating the W/O emulsion by sodium bicarbonate resulted in spherical silica particles. Shape and size distribution of silica particles were observed. The particles were spherical and they have narrow size distribution. Particle sizes were 9.29, 7.39 and $5.73\;{\mu}m$ at homogenizer speed of 2500, 3000, and 3500 rpm, respectively. The particle size was decreased by increasing agitation speed due to the formation of emulsion droplet. At fixed agitation speed, absorbed paraffin oil weight were measured and the $SiO_2/Na_2O$ mole ratio effects on particle size were investigated. Particle size was decreased by increasing the mole ratio of $SiO_2/Na_2O$.

세척시 조제의 종류가 직물에의 Calcium 침착에 미치는 영향 (The Effects of Builders on Calcium Deposition on the Fabric)

  • 박문혜;강혜원;김성련
    • 한국의류학회지
    • /
    • 제6권1호
    • /
    • pp.9-15
    • /
    • 1982
  • The influence of builders on calcium deposition on the fabric was studied by laundering the cotton fabric with sodium carbonate, sodium metasilicate, sodium tripolyphosphate and built detergents in hard water. The laundry variables were: 1) Washing cycles: 5, 10, 20, 30 and 40 cycles. 2) Water hardness: 100 ppm, 150 ppm, 200 ppm and 300 ppm. 3) Builders: $Na_2\;CO_3,\;Na_2\;SiO_3$ and STPP. 4) Detergents: Na-DBS, $Na-DBS+Na_2CO_3,\;Na-DBS+Na_2\;SiO_3,\;Na-DBS+STPP,\;Na-DBS+Na_2\;CO_3+STPP$, and $Na-DBS+Na_2\;SiO_3+STPP$. The fabric was washed for 15 minutes at 23+$1^{\circ}C$ in a washing machine(Gold Star WP 3007) under the similar condition with those of home laundering, and rinsed 3 times in the same water hardness for 5 minutes. The calcium deposits on the fabric was determined by EDTA-BACK titration methods. The results of this study were as follows: 1) The amount of calcium deposits on the fabric was increased with increasing wash cycles. This deposit was due to the build up of insoluble calcium carbonate. 2) As the water hardness increased, the amount of calcium deposits on the fabric was increased. 3) Alkaline builders, such as, $Na_2CO_3$ and $Na_2SiO_3$, promoted calcium deposition on the fabric, however STPP prevented calcium deposition on the fabric. 4) Fabric laundered with $Na-DBS+Na_2CO_3$ showed the highest calcium deposits on the fabric, and decreased with the order of $Na_2CO_3$, $Na-DBS+Na_2SiO_3$, and Na-DBS. And fabrics washed with phosphate-built detergents showed a small amount of calcium deposition.

  • PDF

Application of Synthetic Mineral Microparticles with Various Metal Species

  • Lee, Sa-Yong;Hubbe, Martin A.
    • 펄프종이기술
    • /
    • 제40권5호
    • /
    • pp.1-10
    • /
    • 2008
  • Synthetic mineral microparticles (SMM) is a patented system which has been developed to promote drainage of water and retention of fine particles during papermaking. It is shown in patents that the SMM system can have advantages in both of drainage and retention, compared with montmorillonite (bentonite), which is one of the most popular materials presently used in this kind of application. Turbidity and gravity drainage time were measured using a Britt-Jar test with representative SMM formulations, in order to confirm the efficacy of SMM covering a wide range of compositions and discover effects of some key variables that have the potential to lead to unexpected advantages in terms of the effectiveness of the microparticles, when used in combination with a cationic polyacrylamide treatment of papermaking furnish. An iron silicate showed highest retention performance, as well as suitably fast drainage time relative to other metal silicate and bentonite. Zinc silicate improved retention and drainage. SMM synthesized from aluminum sulfate ($Al_2(SO_4){_3}$) did not show a benefit in retention and drainage, relative to bentonite. SMM synthesized from aluminum chloride ($AlCl_3$) performed better in drainage and retention than bentonite when the Al/Si ratios were 0.76 and 1.00. It was found that when the Al/Si ratio and neutralization are considered, pH variation due to the change of Al/Si ratio can be a key factor to control the size of primary metal silicate particles and the degree of coagulation of the primary particles.