• Title/Summary/Keyword: sodium hydroxide[NaOH]

Search Result 229, Processing Time 0.028 seconds

A study on the Change of Hand of Chitosan Crosslinked Cotton Fabrics - Effect of Concentration of Epichlorohydrin and Chitosan - (키토산 가교처리된 면직물의 태 변화에 관한 연구 - 에피클로로히드린과 키토산 농도의 영향-)

  • Kim, Min-Ji;Park, Jung-Woo;Lee, Shin-Hee
    • Fashion & Textile Research Journal
    • /
    • v.6 no.5
    • /
    • pp.660-666
    • /
    • 2004
  • This article describes the change of hand value of chitosan crosslinked cotton fabrics. The chitosan crosslinked cotton fabrics were manufactured by mercerizing process using epichlorohydrin(ECH) as crosslinkins agent, 2% aqueous acetic acid as a solvent of chitosan and ECH, and 20% aqueous sodium hydroxide as a mercerizing agent and crosslinking catalyst. Cotton fabrics were dipped in the mixed solution of chitosan and ECH, picked up by mangle, mercerized and crosslinked in NaOH solution, and finally wash and dry. Mechanical and physical properties of the chitosan crosslinked fabric were investigated using Kawabata Evaluation System(KES) and other instruments. Tensile energy and tensile strain were decreased with the increase of the concentration of chitosan. Tensile resilience, compression resilience bending rigidity, bending hysteresis, shear stiffness, shear hysteresis, coefficient of friction, geometrical roughness, compression linearity, compressional energy, and thickness were increased with the increase of the concentration of chitosan. On the other hand, bending rigidity, bending hysteresis, coefficient of friction, geometrical roughness, compressional resilience, and thickness were increased with the increase of the concentration of crosslinking agent(epichlorohydrin).

토양 유기물 분리 처리 방법이 비친수성 오염물질 흡착에 미치는 영향

  • Jeong Sang-Jo
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.42-45
    • /
    • 2005
  • Accurate prediction of the fate and transport of contaminants in soils and sediments is very Important to environmental risk assessment and effective remediation of contaminated soils and sediments. The fate and transport of contaminants in subsurface are affected by geosorbents, especially carbonaceous materials including black carbon. Various physical and chemical treatment methods have been developed to separate different kinds of carbonaceous materials from soils and sediments. However, the effects of these separation methods on the properties of remaining carbonaceous materials including sorption capacity and linearity are unclear. The objective of this study is to determine if the chemical and thermal treatment methods previously used to separate different carbonaceous material fractions affect the properties of carbonaceous materials including longer term sorption capacity of hydrophobic organic contaminants. The results indicate that treatments with hydrochloric acid (HCl)/hydrofluoric acid (HF), trifluoroacetic acid (TFA), sodium hydroxide (NaOH) may not affect the sorption capacity of black carbon reference materials such as char and soot, however, treatments with acid dichromate $(K_2Cr_2O_7/H_2SO_4)$ and heat $(375^{\circ}C)$ for 24 hours in sufficient of oxygen) decrease the sorption capacity of them. The results of longer term sorption isotherm indicate that 2 days might be enough for trichloroethene (TCE) to equilibrate apparently with treated black carbon reference materials. The results suggest that acid dichromate and heat treatments may not appropriate method to investigate sorption properties of black carbon in soils and sediments.

  • PDF

Decontamination of Duct Waste Arising from the Decommissioning of TRIGA Research Reactor (TRIGA 연구로 해체 시 발생하는 덕트 폐기물의 제염)

  • 최왕규;이근우;정경환;오원진;박진호
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.720-724
    • /
    • 2003
  • In order to develop the decontamination process for self-disposal with authorization of duct waste generated from the decommissioning of retired TRIGA research reactors, the surface characterization of duct specimen taken from TRIGA research reactor was carried out and the adequate decontamination method was selected. It can be known that the paint coated internal surface of duct is contaminated with $^{60}Co$and $^{137}Cs$, which are penetrated into the paint layer and incorporated into zinc plated surface of galvanized iron as the material of duct. Two step chemical decontamination process, in which sodium hydroxide and sulfuric acid solutions are used in turn, is quite successful to remove the surface contamination of duct waste.

  • PDF

Hydrolytic Conversion of Sawdust into Metabolizable Sugars (톱밥가루의 가수분해(加水分解)에 의한 당생산(糖生産))

  • Kim, Dong-Woo;Cho, Kwang-Yun;Bae, Kook-Woong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.11 no.4
    • /
    • pp.13-16
    • /
    • 1982
  • The hydrolytic conversion of sawdust was studied by sulfuric acid-enzymatic and sodium hydroxide-enzymatic treatments. Sugars were identified by paper chromatography and quantified colorimetrically. Sawdust yielded dextrose and xylose in concentrations ranging from 3.01 to 3.64 and 3.48 to 6.61 grams per 100g. Under optimum conditions, the total concentration of sugars was 10.7 grams per 100 grams.

  • PDF

Synthesis of New Crown Ethers Containing Benzothiazole Group (벤조티아졸기를 갖는 새로운 크라운 에테르의 합성)

  • Chang, Seung-Hyun;Yeon, Ae-Sook;Chung, Kwang-Bo
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.2
    • /
    • pp.117-121
    • /
    • 1996
  • Two new crown ethers containing nitrogen and sulfur atoms adjacent to the crown rings were prepared. 4'-Benzothiazolylbenzo-12-crown-4 (1) or 4'-benzothiazolylbenzo-15-crown-5 (2) were synthesized by reaction of 2-aminothiophenol with 4'-formylbenzo-12-crown-4 (3) or 4'-formylbenzo-15-crown-5 (4) respectively. (3) and (4) were obtained by reaction of 3, 4-dihydroxybenzaldehyde with tri- or tetraethyleneglycol ditosylate. Triethyleneglycol ditosylate or tetraethyleneglycol ditosylate were synthesized by reaction of p-toluenesulfonylchloride with triethyleneglycol or tetraethyleneglycol in the presence of sodium hydroxide.

  • PDF

Fabrication and Oxidation Behaviors of Nickel-coated Aluminum Powders for Energetic Applications (에너제틱 응용을 위한 Ni코팅된 Al분말소재 제조 및 산화거동)

  • Kim, Kyung Tae;Woo, Jae Yeol;Yu, Ji Hun;Lee, Hye Moon;Lim, Tae Soo;Choi, Yoon Jeong;Kim, Chang Kee
    • Particle and aerosol research
    • /
    • v.10 no.4
    • /
    • pp.177-182
    • /
    • 2014
  • In this study, nickel-coated aluminum (Ni/Al) powders were synthesized for the utilization of energetic applications. Oxide materials present at the surface of Al powders of $45{\mu}m$ in averaged size were removed by using sodium hydroxide(NaOH) solution which is used for controlling pH. Nickel material is coated into the surface of oxide-removed Al powders by electroless-plating process. The microstructure of fabricated Ni/Al powders shows that nickel layers with a few hundreds nm were very homogeneously formed onto the surface of Al powders. The oxidation behavior of Ni/Al exihibit somewhat faster oxidation rate than that of pure Al with surface oxidation. Also, the higher exothermic reaction was observed from the Ni/Al powders. From the result of this, nickel coating is very promising method to obtain highly reactive and safe Al powders for energetic applications.

Synthesis of Zinc Oxide Nanoparticle-(C60) Fullerene Nanowhisker Composite for Catalytic Degradation of Methyl Orange under Ultraviolet and Ultrasonic Irradiation

  • Ko, Jeong Won;Son, Yeon-A;Ko, Weon Bae
    • Elastomers and Composites
    • /
    • v.55 no.4
    • /
    • pp.321-328
    • /
    • 2020
  • Zinc nitrate hexahydrate (Zn(NO3)2·6H2O) and sodium hydroxide (NaOH) were dissolved in distilled water and stirred for 30 min. The resulting solution was sonicated by an ultrasonic wave for 45 min. This solution was washed with distilled water and ethanol after centrifugation; next, it was placed in an electric furnace at 200℃ for 1 h under the flow of Ar gas to obtain zinc oxide nanoparticle. A zinc oxide nanoparticle-(C60) fullerene nanowhisker composite was synthesized using the zinc oxide nanoparticle solution, C60-saturated toluene, and isopropyl alcohol via the liquid-liquid interfacial precipitation method. The zinc oxide nanoparticle and zinc oxide nanoparticle-(C60) fullerene nanowhisker composite were characterized using X-ray diffraction, scanning electron microscopy, and Raman spectroscopy, and they were used for the catalytic degradation of methyl orange (MO) under ultraviolet (at 254 and 365 nm) and ultrasonic irradiation. In addition, the catalytic degradation of MO over the zinc oxide nanoparticle and zinc oxide nanoparticle-(C60) fullerene nanowhisker composite was evaluated using ultraviolet-visible spectroscopy.

Extraction and Bleaching of Acid- and Pepsin-Soluble Collagens from Shark Skin and Muscle (상어 껍질과 육으로부터 산 및 Pepsin 가용성 콜라겐의 추출과 탈색조건)

  • Kim, Jae-Won;Kim, Do-Kyun;Kim, Mee-Jung;Kim, Soon-Dong
    • Food Science and Preservation
    • /
    • v.17 no.1
    • /
    • pp.91-99
    • /
    • 2010
  • Extraction and bleaching of citric acid- and pepsin-soluble collagens (ASC and PSC, respectively) from shark (Isurus oxyrinchus) skin and muscle were investigated. The optimal sodium hydroxide concentration for extraction was 0.3 M and the optimal treatment time for removal of foreign material was 9 h. The optimal sodium hypochlorite level for bleaching of shark skin was 0.48% (w/v), and sodium hypochlorite was a better bleaching agent than acetone, hydrogen peroxide (10%, v/v), sodium sulfite (0.48%, w/v), sodium thiosulfate (0.48%, w/v), or sodium metabisulfite (0.48%, w/v). Optimal citric acid concentration and extraction time for ASC were 0.3 M and 72 h, respectively, whereas optimal conditions for extraction of PSC were treatment with 0.1 M citric acid containing 0.1% (w/v) pepsin for 24 h. Protein contents in ASSC (acid-soluble shark skin collagen), ASMC (acid-soluble shark meat collagen), PSSC (pepsin-soluble shark skin collagen), and PSMC (pepsin-soluble shark meat collagen) were 88.66%, 83.09%, 90.33%, and 84.81% (on a dry weight basis), respectively, similar to that of commercial marine collagen (88.86%). Net collagen contents of ASSC, ASMC, PSSC, and PSMC, calculated from hydroxyproline levels, were 70.31%, 25.70%, 83.09%, and 32.94%, respectively. The yields of freeze-dried ASSC, ASMC, PSSC,and PSMC were 57.22%, 53.85%, 23.28%, and 20.61%.

Simultaneous Concentration and Determination of Several Trace Elements in Sea Water by Ce(OH)$_3$ Coprecipitation (Ce(OH)$_3$의 공침부선에 의한 해주중 몇 가지 미량원소의 동시 농축 및 정량)

  • Woo-Sik Sung;Hee-Seon Choi;Young-Sang Kim
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.3
    • /
    • pp.327-333
    • /
    • 1993
  • A method was developed for the determination of trace elements in seawater by precipitate flotation preconcentration and subsequent flame atomic absorption detection. In order to quantitatively coprecipitate trace ions such as Cd(II), CuI(II), Fe(III), Mn(II), Pb(II) and Pd(II), 2.0 ml of 1.0M cerium(III) solution was added to 1.0l of seawater and the pH was adjusted to 9.5 with 5.0 M sodium hydroxide solution while stirring with a magnetic stirrer. The precipitate was floated with the aid of surfactant solution (1.0 ml of 0.3% sodium oleate) by bubbling nitrogen gas through a porous (No. 4) fritted glass disk. The floats was collected in a small Erlenmeyer flask by suction. The washed precipitate was dissolved in 8.0 M nitric acid and marked with deionized water in the volumetric flask of 10.0 ml. The analyte was determined by measuring the atomic absorbances in 100-fold concentrated solution. Above all analytes in Kangnung (East Sea) and Kanghwado (West Sea) sea waters were found to be under the detection limit of this method. The recoveries of over 92% for all analytes spiked into seawater samples showed that this method was applicable to the analysis of real seawater.

  • PDF

Comparative Study on Transparent Conductive Single-Walled Carbon Nanotube Thin Films by Using Various Surfactants (다양한 계면활성제를 이용한 투명 전도성 탄소나노튜브 필름의 비교연구)

  • Kim, Myoung-Su;Goak, Jeung-Choon;Lee, Seung-Ho;Han, Jong-Hun;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.410-410
    • /
    • 2009
  • 현재 탄소나노튜브 (carbon nanotube, CNT)를 여러 분야에 응용하기 위해 다양한 연구가 진행되고 있다. 본 논문에서는 단일벽 CNT (single-walled CNT)를 여러 가지 계면활성제로 최적 분산시킨 수용액으로부터 제조한 투명 전도성 필름을 터치스크린이나 디스 플레이 소자에 응용할 목적으로 필름의 전기저항 및 광 투과도를 향상시키기 위한 연구를 수행하였다. 우선 계면활성제로 분산시킨 정량의 CNT 수용액을 알루미나 재질의 필터에서 진공 필터링하여 CNT 필름을 제조하였다. 알루미나 필터를 sodium hydroxide (NaOH) 수용액으로 용해시켜 제거하여 얻은 CNT 필름을 유리기판 위에 부착시켰다. 필름의 전기저항을 낮추기 위해 유리기판 위에 부착된 CNT 필름을 질산($HNO_3$) 용액으로 처리하였다. Scanning electron microscopy, UV-Vis spectroscopy를 이용하여 각각 필름의 형상과 광투과도를 분석하였고, 4-point probe로 면 저항을 측정하였다. 계면활성제로 분산시킨 대부분의 CNT 필름의 면 저항은 질산 처리에 의해 감소하였다. 이는 CNT 표면에 코팅되어 있던 계면활성제가 질산에 의해 제거되었기 때문인 것으로 예상된다. 그리고 anionic 계면활성제를 이용한 필름이 대체로 낮은 면 저항을 보였고, 그중 분산력이 가장 좋은 sodium dodecyl benzenesulfonate(SDBS)가 최저의 면 저항을 나타내었다. 질산처리에서 Polyvinyl pyrrolidone(PVP)과 cetyltrimethylammonium bromide(CTAB)를 사용하여 제조한 CNT 필름의 면 저항이 가장 뚜렷한 감소를 보였다.

  • PDF