• Title/Summary/Keyword: sodium hydroxide[NaOH]

Search Result 228, Processing Time 0.024 seconds

A Simple Method for Recovery of Microbial $Poly-{\beta}-hydroxybutyrate$ by Alkaline Solution Treatment

  • Lee, In-Young;Chang, Ho-Nam;Park, Young-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.4
    • /
    • pp.238-240
    • /
    • 1995
  • A novel and simple purification method for microbial $poly-{\beta}-hydroxybutyrate$ (PHS) was developed. Sodium hydroxide was found to be efficient for digesting cell materials. Initial biomass concentration, NaOH concentation, digestion time, and incubation temperature were optimized. When 40 g/l of biomass was incubated in 0.1 N NaOH at $30^{\circ}C$ for 1 h, PHB purity of 88.4% with a weight average molecular weight ($M_w$) of 770,000 and a polydispersity index (PI) of 2.4 was recovered with a yield of 90.8% from the biomass which initially contained PHB of a $M_w$ of 780,000 and a PI of 2.3.

  • PDF

A Study on the Alkali Application of Recycled Aggregates as a Solution to Reduced Intial Intensity of Blast Furnace Slags (고로슬래그의 초기강도 저하 해결방안으로써 순환 잔골재의 알칼리 활용가치에 대한 연구)

  • Kwak, Yong-Jin;Zhao, Yang;Jung, sang-woon;Heo, Young-sun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.85-86
    • /
    • 2013
  • Weakness of fine powder of blast furnace slags includes the decrease of initial intensity and delay of setting time. To solve this problem, there has been research on the alkali activation to induce hardening using alkaline chemical. However, the use of chemicals is dangerous and not cost effective, which can be solved by using recycled aggregates, one of construction wastes. The role of alkali activator can be substituted by alkali of non-hydrated cement included in recycled aggregates. In this study, the alkaline value of recycled aggregates will be evaluated through the comparison of molarity of sodium hydroxide (NaOH).

  • PDF

Effect of Dilute Alkali on Structural Features and Enzymatic Hydrolysis of Barley Straw (Hordeum vulgare) at Boiling Temperature with Low Residence Time

  • Haque, Md. Azizul;Barman, Dhirendra Nath;Kang, Tae Ho;Kim, Min Keun;Kim, Jungho;Kim, Hoon;Yun, Han Dae
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.12
    • /
    • pp.1681-1691
    • /
    • 2012
  • This work was conducted to evaluate the effect of dilute sodium hydroxide (NaOH) on barley straw at boiling temperature and fractionation of its biomass components into lignin, hemicellulose, and reducing sugars. To this end, various concentrations of NaOH (0.5% to 2%) were applied for pretreatment of barley straw at $105^{\circ}C$ for 10 min. Scanning electron microscopy (SEM), atomic force microscopy (AFM), and Fourier transform infrared (FTIR) spectroscopy studies revealed that 2% NaOH-pretreated barley straw exposed cellulose fibers on which surface granules were abolished due to comprehensive removal of lignin and hemicellulose. The X-ray diffractometer (XRD) result showed that the crystalline index was increased with increased concentration of NaOH and found a maximum 71.5% for 2% NaOH-pretreated sample. The maximum removal of lignin and hemicellulose was 84.8% and 79.5% from 2% NaOH-pretreated liquor, respectively. Reducing sugar yield was 86.5% from 2% NaOH-pretreated sample using an enzyme dose containing 20 FPU of cellulase, 40 IU of ${\beta}$-glucosidase, and 4 FXU of xylanase/g substrate. The results of this study suggest that it is possible to produce the bioethanol precursor from barley straw using 2% NaOH at boiling temperature.

Alkali activated ceramic waste with or without two different calcium sources

  • Zedan, Sayieda R.;Mohamed, Maha R.;Ahmed, Doaa A.;Mohammed, Aya H.
    • Advances in materials Research
    • /
    • v.4 no.3
    • /
    • pp.133-144
    • /
    • 2015
  • The aim of this investigation is to prepare geopolymer resin by alkali activation of ceramic waste (AACW) with different sodium hydroxide (NaOH) and liquid sodium silicate (LSS) concentrations. In order to prepare geopolymer cement, AACW was replaced by 10 and 30 % by weight (wt.,) of concrete waste (CoW) as well as 10 and 30 wt., % ground granulated blast-furnace slag (GGBFS). The results showed that, the compressive strength of AACW increases with the increase of activator content up to 15:15 wt., % NaOH: LSS. All AACW hardened specimens activated by 3:3 (MC6), 6:6 (MC12), 12:12 (MC24) and 15:15 wt., % (MC30) NaOH: LSS destroyed when cured in water for 24h. The MC18 mix showed higher resistivity to water curing. The results also showed that, the replacement of AACW containing 9:9 wt., % NaOH: LSS (MC18) by 10 (MCCo10) and 30 (MCCo30) wt., % CoWdecreased the compressive strength at all ages of curing. In contrast, the MCCo10 mix showed the lower chemically combined water content compared to MC18 mix. The MCCo30 mix showed the higher chemically combined water content compared to MC18 and MCCo10 mixes. The compressive strength and chemically combined water of all AACWmixes containing GGBFS (MCS10 and MCS30) were higher than those of AACWwith no GGBFS (MC18). As the amount of GGBFS content increases the chemically combined water increases. The x-ray diffraction (XRD) proved that as the amount of CoWcontent increases, the degree of crystallinity increases. Conversely, the replacement of AACW by GGBFS leads to increase the amorphiticity character. The infrared spectroscopy (FTIR) confirms the higher reactivity of GGBFS compared to CoW as a result of successive hydration products formation, enhancing the compaction of microstructure as observed in scanning electron microscopy (SEM).

A Study on Soil Washing for Diesel-contaminated Soil by using Decomposition of NaOH/H$_2$O$_2$ (디젤유로 오염된 토양의 NaOH/H$_2$O$_2$ 분해를 이용한 토양세척에 관한 연구)

  • Hwang, Jong-Hyun;Choi, Won-Joon;Kim, Min-Chul;Jung, Jong-Hyeon;Ha, Soo-Ho;Oh, Kwang-Joong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.10
    • /
    • pp.999-1005
    • /
    • 2008
  • The main reaction for soil washing with using sodium hydroxide(NaOH) and hydrogen peroxide(H$_2$O$_2$) was desorption and flotation of petrochemical contaminant by means of oxygen bubble. We found the rate of decomposition by rate constant according to various temperature. For the purpose of optimizing the operation factor, we examined the effect of concentration of NaOH and H$_2$O$_2$, washing time, and soil:water ratio. The rate of decomposition for H$_2$O$_2$ in liquid phase is the first order reaction by its concentration. The rate constant of k$_1$ was 0.9439 $\times$ exp(-1376.82/RT) when concentration of NaOH was lower than 0.1 M, and the rate constant of k$_2$ was 17.3588 $\times$ exp(-2320.06/RT) when it was higher than NaOH of 0.1 M. It found that NaOH was facilitated at the beyond of specific concentration. We confirmed the optimum concentration of NaOH/H$_2$O$_2$ by means of rate constants during soil washing. Also, the optimum conditions during soil washing were washing time of 15 min, soil : water ratio of 1 : 3, and NaOH/H$_2$O$_2$ concentration of 0.25 M/0.1 M.

Butyric Acid Fermentation of Sodium Hydroxide Pretreated Rice Straw with Undefined Mixed Culture

  • Ai, Binling;Li, Jianzheng;Chi, Xue;Meng, Jia;Liu, Chong;Shi, En
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.5
    • /
    • pp.629-638
    • /
    • 2014
  • This study describes an alternative mixed culture fermentation technology to anaerobically convert lignocellulosic biomass into butyric acid, a valuable product with wide application, without supplementary cellulolytic enzymes. Rice straw was soaked in 1% NaOH solution to increase digestibility. Among the tested pretreatment conditions, soaking rice straw at $50^{\circ}C$ for 72 h removed ~66% of the lignin, but retained ~84% of the cellulose and ~71% of the hemicellulose. By using an undefined cellulose-degrading butyrate-producing microbial community as butyric acid producer in batch fermentation, about 6 g/l of butyric acid was produced from the pretreated rice straw, which accounted for ~76% of the total volatile fatty acids. In the repeated-batch operation, the butyric acid production declined batch by batch, which was most possibly caused by the shift of microbial community structure monitored by denaturing gradient gel electrophoresis. In this study, batch operation was observed to be more suitable for butyric acid production.

Property enhancement of geopolymer by means of separation/classification of spent-resources (폐자원의 분류/선별을 통한 지오폴리머 특성 개선 연구)

  • Kim, Yooteak;Kim, Hyunjung;Jang, Changsub
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.6
    • /
    • pp.299-304
    • /
    • 2012
  • Geopolymer was made using magnetic separation fly ash with NaOH(Sodium Hydroxide) and the water glass as alkali activators in this study. Compressive strength of geopolymers ceramics was measured and analyzed according to the type of materials. Under the conditions of fly ash without magnetic separation and 28 day curing after molding, the compressive strength of the geopolymer reached up to 28 MPa.

A Newly Designed Fixed Bed Redox Flow Battery Based on Zinc/Nickel System

  • Mahmoud, Safe ELdeen M.E.;Youssef, Yehia M.;Hassan, I.;Nosier, Shaaban A.
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.236-243
    • /
    • 2017
  • A fixed-bed zinc/nickel redox flow battery (RFB) is designed and developed. The proposed cell has been established in the form of a fixed bed RFB. The zinc electrode is immersed in an aqueous NaOH solution (anolyte solution) and the nickel electrode is immersed in the catholyte solution which is a mixture of potassium ferrocyanide, potassium ferricyanide and sodium hydroxide as the supporting electrolyte. In the present work, the electrode area has been maximized to $1500cm^2$ to enforce an increase in the energy efficiency up to 77.02% at a current density $0.06mA/cm^2$ using a flow rate $35cm^3/s$, a concentration of the anolyte solution is $1.5mol\;L^{-1}$ NaOH and the catholyte solution is $1.5mol\;L^{-1}$ NaOH as a supporting electrolyte mixed with $0.2mol\;L^{-1}$ equimolar of potassium ferrocyanide and potassium ferricyanide. The outlined results from this study are described on the basis of battery performance with respect to the current density, velocity in different electrolytes conditions, energy efficiency, voltage efficiency and power of the battery.

Evaluation of protective coatings for geopolymer mortar under aggressive environment

  • Rathinam, Kumutha;Kanagarajan, Vijai;Banu, Sara
    • Advances in materials Research
    • /
    • v.9 no.3
    • /
    • pp.219-231
    • /
    • 2020
  • The aim of this study is to investigate the durability of fly ash based geopolymer mortar with and without protective coatings in aggressive chemical environments. The source materials for geopolymer are Fly ash and Ground Granulated Blast furnace Slag (GGBS) and they are considered in the combination of 80% & 20% respectively. Two Molarities of NaOH solution were considered such as 8M and 10M. The ratio of binder to sand and Sodium silicate to Sodium hydroxide solution (Na2SiO3/NaOH) are taken as 1:2 and 2 respectively. The alkaline liquid to binder ratio is 0.4. Compressive strength tests were conducted at various ages of the mortar specimens. In order to evaluate the performance of coatings on geopolymer mortar under aggressive chemical environment, the mortar specimens were coated with two different types of coatings such as epoxy and Acrylic. They were then subjected to different chemical environments by immersing them in 10% standard solutions of each ammonium nitrate, sodium chloride and sulphuric acid. Drop in compressive strength as a result of chemical exposure was considered as a measure of chemical attack and the drop in compressive strength was measured after 30 and 60 days of chemical exposure. The compressive strength results following chemical exposure indicated that the specimens containing the acrylic coating proved to be more resistant to chemical attacks. The control specimen without coating showed a much greater degree of deterioration. Therefore, the application of acrylic coating was invariably much more effective in improving the compressive strength as well as the resistance of mortar against chemical attacks. The results also indicated that among all the aggressive attacks, the sulphate environment has the most adverse effect in terms of lowering the strength.

A Numerical Design and Feasibility Study of Self-Wastage Experiment Using Simulant Material in a Sodium Fast Reactor

  • Jang, Sunghyon;Takata, Takashi;Yamaguchi, Akira
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.368-375
    • /
    • 2016
  • A sodiume-water reaction takes place when high-pressured water vapor leaks into sodium through a tiny defect on the surface of the heat transfer tube in a steam generator of the sodium-cooled fast reactor. The sodiume-water reaction brings deterioration of the mechanical strength of the heat transfer tube at the initial leakage site. As a result, it damages the crack itself, which may eventually enlarge into a larger opening. This self-enlargement is called "self-wastage phenomenon." In this study, a simulant experiment was proposed to reproduce the self-enlargement of a crack and to evaluate the mechanism of the self-wastage. The damage on the surface of the crack was simulated by making the neutralization reaction with hydrochloric acid solution and sodium hydroxide solution. A numerical investigation was carried out to validate the feasibility of the approach and to determine experimental conditions. From the computation results, it is observed that when 5M HCl is injected into 5M of NaOH with 0.05 m/s inlet velocity, the temperature at the surface near the crack increased over 319.26 K. The computational results show that the self-wastage phenomenon is capable of being reproduced by the simulant experiment.