Browse > Article
http://dx.doi.org/10.4014/jmb.1309.09078

Butyric Acid Fermentation of Sodium Hydroxide Pretreated Rice Straw with Undefined Mixed Culture  

Ai, Binling (State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology)
Li, Jianzheng (State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology)
Chi, Xue (State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology)
Meng, Jia (State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology)
Liu, Chong (State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology)
Shi, En (State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology)
Publication Information
Journal of Microbiology and Biotechnology / v.24, no.5, 2014 , pp. 629-638 More about this Journal
Abstract
This study describes an alternative mixed culture fermentation technology to anaerobically convert lignocellulosic biomass into butyric acid, a valuable product with wide application, without supplementary cellulolytic enzymes. Rice straw was soaked in 1% NaOH solution to increase digestibility. Among the tested pretreatment conditions, soaking rice straw at $50^{\circ}C$ for 72 h removed ~66% of the lignin, but retained ~84% of the cellulose and ~71% of the hemicellulose. By using an undefined cellulose-degrading butyrate-producing microbial community as butyric acid producer in batch fermentation, about 6 g/l of butyric acid was produced from the pretreated rice straw, which accounted for ~76% of the total volatile fatty acids. In the repeated-batch operation, the butyric acid production declined batch by batch, which was most possibly caused by the shift of microbial community structure monitored by denaturing gradient gel electrophoresis. In this study, batch operation was observed to be more suitable for butyric acid production.
Keywords
Butyric acid fermentation; undefined mixed culture; rice straw; sodium hydroxide pretreatment; carboxylate platform;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Steer T, Collins MD, Gibson GR, Hippe H, Lawson PA. 2001. Clostridium hathewayi sp. nov., from human faeces. Syst. Appl. Microbiol. 24: 353-357.   DOI   ScienceOn
2 Van Soest PJ, Robertson J, Lewis B. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74: 3583-3597.   DOI   ScienceOn
3 Wang Z, Keshwani DR, Redding AP, Cheng JJ. 2010. Sodium hydroxide pretreatment and enzymatic hydrolysis of coastal Bermuda grass. Bioresour. Technol. 101: 3583-3585.   DOI   ScienceOn
4 Wang Z, Li R, Xu J, Marita JM, Hatfield RD, Qu R, Cheng JJ. 2012. Sodium hydroxide pretreatment of genetically modified switchgrass for improved enzymatic release of sugars. Bioresour. Technol. 110: 364-370.   DOI   ScienceOn
5 Xu J, Cheng JJ, Sharma-Shivappa RR, Burns JC. 2010. Sodium hydroxide pretreatment of switchgrass for ethanol production. Energy Fuels 24: 2113-2119.   DOI   ScienceOn
6 Zhang C, Yang H, Yang F, Ma Y. 2009. Current progress on butyric acid production by fermentation. Curr. Microbiol. 59: 656-663.   DOI
7 Zhao Y, Wang Y, Zhu JY, Ragauskas A, Deng Y. 2008. Enhanced enzymatic hydrolysis of spruce by alkaline pretreatment at low temperature. Biotechnol. Bioeng. 99: 1320-1328.   DOI   ScienceOn
8 Zigova J, Sturdík E. 2000. Advances in biotechnological production of butyric acid. J. Ind. Microbiol. Biotechnol. 24: 153-160.   DOI   ScienceOn
9 Nachiappan B, Fu Z, Holtzapple MT. 2011. Ammonium carboxylate production from sugarcane trash using longterm air-lime pretreatment followed by mixed-culture fermentation. Bioresour. Technol. 102: 4210-4217.   DOI   ScienceOn
10 Naritomi T, Kouda T, Yano H, Yoshinaga F, Shigematsu T, Morimura S, Kida K. 2002. Influence of broth exchange ratio on bacterial cellulose production by repeated-batch culture. Process Biochem. 38: 41-47.   DOI   ScienceOn
11 Nlewem KC, Thrash Jr ME. 2010. Comparison of different pretreatment methods based on residual lignin effect on the enzymatic hydrolysis of switchgrass. Bioresour. Technol. 101: 5426-5430.   DOI   ScienceOn
12 Richter H, Qureshi N, Heger S, Dien B, Cotta MA, Angenent LT. 2012. Prolonged conversion of n-butyrate to n-butanol with Clostridium saccharoperbutylacetonicum in a two-stage continuous culture with in-situ product removal. Biotechnol. Bioeng. 109: 913-921.   DOI   ScienceOn
13 Song H, Eom M-H, Lee S, Lee J, Cho J-H, Seung D. 2010. Modeling of batch experimental kinetics and application to fed-batch fermentation of Clostridium tyrobutyricum for enhanced butyric acid production. Biochem. Eng. J. 53: 71-76.   DOI   ScienceOn
14 Stanbury PF. 2000. Fermentation technology, pp. 1-24. In Walker JM, Rapley R (eds.). Molecular Biology and Biotechnology. The Royal Society of Chemistry, London.
15 Kang K, Jeong G-T, Park D-H. 2012. Pretreatment of rapeseed straw by sodium hydroxide. Bioprocess Biosyst. Eng. 35: 705-713.   DOI   ScienceOn
16 Kim T, Lee Y. 2007. Pretreatment of corn stover by soaking in aqueous ammonia at moderate temperatures. Appl. Biochem. Biotechnol. 137-140: 81-92.   DOI   ScienceOn
17 Kim TH, Taylor F, Hicks KB. 2008. Bioethanol production from barley hull using SAA (soaking in aqueous ammonia) pretreatment. Bioresour. Technol. 99: 5694-5702.   DOI   ScienceOn
18 Kleerebezem R, van Loosdrecht MCM. 2007. Mixed culture biotechnology for bioenergy production. Curr. Opin. Biotechnol. 18: 207-212.   DOI   ScienceOn
19 Lee S-M, Cho MO, Park CH, Chung Y-C, Kim JH, Sang B-I, Um Y. 2008. Continuous butanol production using suspended and immobilized Clostridium beijerinckii NCIMB 8052 with supplementary butyrate. Energy Fuels 22: 3459-3464.   DOI   ScienceOn
20 Li J, Zheng G, He J, Chang S, Qin Z. 2009. Hydrogenproducing capability of anaerobic activated sludge in three types of fermentations in a continuous stirred-tank reactor. Biotechnol. Adv. 27: 573-577.   DOI   ScienceOn
21 Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS. 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol Biol. Rev. 66: 506-577.   DOI   ScienceOn
22 Morikawa Y, Kawamori M, Ado Y, Shinsha Y, Oda F, Takasawa S. 1985. Improvement of cellulase production in Trichoderma reesei. Agric. Biol. Chem. 49: 1869-1871.   DOI
23 Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M. 2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96: 673-686.   DOI   ScienceOn
24 Fernando S, Adhikari S, Chandrapal C, Murali N. 2006. Biorefineries: current status, challenges, and future direction. Energy Fuels 20: 1727-1737.   DOI   ScienceOn
25 Fu Z, Holtzapple M. 2011. Anaerobic thermophilic fermentation for carboxylic acid production from in-storage air-lime-treated sugarcane bagasse. Appl. Microbiol. Biotechnol. 90: 1669-1679.   DOI   ScienceOn
26 Galbe M, Zacchi G. 2012. Pretreatment: the key to efficient utilization of lignocellulosic materials. Biomass Bioenergy 46: 70-78.   DOI   ScienceOn
27 Ghose T. 1987. Measurement of cellulase activities. Pure Appl. Chem. 59: 257-268.
28 Griffin DW, Schultz MA. 2012. Fuel and chemical products from biomass syngas: a comparison of gas fermentation to thermochemical conversion routes. Environ. Prog. Sustain. Energy 31: 219-224.   DOI   ScienceOn
29 Guo P, Wang X, Zhu W, Yang H, Cheng X, Cui Z. 2008. Degradation of corn stalk by the composite microbial system of MC1. J. Environ. Sci. (China) 20: 109-114.   DOI   ScienceOn
30 Holtzapple M, Davison R, Ross M, Aldrett-Lee S, Nagwani M, Lee C-M, et al. 1999. Biomass conversion to mixed alcohol fuels using the MixAlco process. Appl. Biochem. Biotechnol. 79: 609-631.   DOI   ScienceOn
31 Holtzapple M, Granda C. 2009. Carboxylate platform: the MixAlco process part 1: comparison of three biomass conversion platforms. Appl. Biochem. Biotechnol. 156: 95-106.   DOI   ScienceOn
32 Huanga W-C, Chenb S-J, Chena T-L. 2008. Production of hyaluronic acid by repeated batch fermentation. Biochem. Eng. J. 40: 460-464.   DOI   ScienceOn
33 Iino T, Mori K, Tanaka K, Suzuki K-I, Harayama S. 2007. Oscillibacter valericigenes gen. nov., sp. nov., a valerateproducing anaerobic bacterium isolated from the alimentary canal of a Japanese corbicula clam. Int. J. Syst. Evol. Microbiol. 57: 1840-1845.   DOI   ScienceOn
34 Agler MT, Wrenn BA, Zinder SH, Angenent LT. 2011. Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform. Trends Biotechnol. 29: 70-78.   DOI   ScienceOn
35 Al-Shorgani N, Ali E, Kalil M, Yusoff W. 2012. Bioconversion of butyric acid to butanol by Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564) in a limited nutrient medium. BioEnerg. Res. 5: 287-293.   DOI
36 Albuquerque MGE, Martino V, Pollet E, Averous L, Reis MAM. 2011. Mixed culture polyhydroxyalkanoate (PHA) production from volatile fatty acid (VFA)-rich streams: effect of substrate composition and feeding regime on PHA productivity, composition and properties. J. Biotechnol. 151: 66-76.   DOI   ScienceOn
37 Bassam BJ, Caetano-Anolles G, Gresshoff PM. 1991. Fast and sensitive silver staining of DNA in polycrylamide gels. Anal. Biochem. 196: 80-83.   DOI   ScienceOn
38 Beun JJ, Dircks K, Van Loosdrecht MCM, Heijnen JJ. 2002. Poly-$\beta$-hydroxybutyrate metabolism in dynamically fed mixed microbial cultures. Water Res. 36: 1167-1180.   DOI   ScienceOn
39 Chan WN, Fu Z, Holtzapple MT. 2011. Co-digestion of swine manure and corn stover for bioenergy production in $MixAlco^{TM}$ consolidated bioprocessing. Biomass Bioenergy 35: 4134-4144.   DOI   ScienceOn
40 Chandra R, Takeuchi H, Hasegawa T, Kumar R. 2012. Improving biodegradability and biogas production of wheat straw substrates using sodium hydroxide and hydrothermal pretreatments. Energy 43: 273-282.   DOI   ScienceOn
41 Lay C, Sutren M, Rochet V, Saunier K, Dore J, Rigottier- Gois L. 2005. Design and validation of 16S rRNA probes to enumerate members of the Clostridium leptum subgroup in human faecal microbiota. Environ. Microbiol. 7: 933-946.   DOI   ScienceOn