Browse > Article
http://dx.doi.org/10.4014/jmb.1206.06058

Effect of Dilute Alkali on Structural Features and Enzymatic Hydrolysis of Barley Straw (Hordeum vulgare) at Boiling Temperature with Low Residence Time  

Haque, Md. Azizul (Division of Applied Life Science (BK21 Program), Gyeongsang National University)
Barman, Dhirendra Nath (Division of Applied Life Science (BK21 Program), Gyeongsang National University)
Kang, Tae Ho (Division of Applied Life Science (BK21 Program), Gyeongsang National University)
Kim, Min Keun (Gyeongsangnam-do Agricultural Research and Extension Service)
Kim, Jungho (Department of Agricultural Chemistry, Sunchon National University)
Kim, Hoon (Department of Agricultural Chemistry, Sunchon National University)
Yun, Han Dae (Division of Applied Life Science (BK21 Program), Gyeongsang National University)
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.12, 2012 , pp. 1681-1691 More about this Journal
Abstract
This work was conducted to evaluate the effect of dilute sodium hydroxide (NaOH) on barley straw at boiling temperature and fractionation of its biomass components into lignin, hemicellulose, and reducing sugars. To this end, various concentrations of NaOH (0.5% to 2%) were applied for pretreatment of barley straw at $105^{\circ}C$ for 10 min. Scanning electron microscopy (SEM), atomic force microscopy (AFM), and Fourier transform infrared (FTIR) spectroscopy studies revealed that 2% NaOH-pretreated barley straw exposed cellulose fibers on which surface granules were abolished due to comprehensive removal of lignin and hemicellulose. The X-ray diffractometer (XRD) result showed that the crystalline index was increased with increased concentration of NaOH and found a maximum 71.5% for 2% NaOH-pretreated sample. The maximum removal of lignin and hemicellulose was 84.8% and 79.5% from 2% NaOH-pretreated liquor, respectively. Reducing sugar yield was 86.5% from 2% NaOH-pretreated sample using an enzyme dose containing 20 FPU of cellulase, 40 IU of ${\beta}$-glucosidase, and 4 FXU of xylanase/g substrate. The results of this study suggest that it is possible to produce the bioethanol precursor from barley straw using 2% NaOH at boiling temperature.
Keywords
Biofuel; barley straw; alkali pretreatment; boiling temperature; atomic force microscopy;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Yoshida, M., Y. Liu, S. Uchida, K. Kawarada, Y. Ukagmi, H. Ichinose, S. Kaneko, and K. Fukuda. 2008. Effects of cellulose crystallinity, hemicellulose, and lignin on the enzymatic hydrolysis of Miscanthus sinensis to monosacharides. Biosci. Biotechnol. Biochem. 72: 805-810.   DOI   ScienceOn
2 Zhang, Y. H. P. 2008. Reviving the carbohydrate economy via multiproduct lignocellulose biorefineries. J. Ind. Microbiol. Biotechnol. 3: 367-375.
3 Mosier, N., R. Hendrickson, N. Ho, M. Sedlak, and M. R. Ladisch. 2005. Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresour. Technol. 96: 1986-1993.   DOI   ScienceOn
4 Person, T., J. L. Ren, E. Joelsson, and A. S. Jonsson. 2009. Fractionation of wheat and barley straw to access highmolecularmass hemicelluloses prior to ethanol production. Bioresour. Technol. 100: 3906-3913.   DOI   ScienceOn
5 Segal, L., J. J. Creely, Jr. A. E. Martin, and C. M. Conrad. 1962. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Tex. Res. J. 29: 786-794.
6 Sendich, E., M. Laser, S. Kim, H. Alizadeh, L. Laureano-Perez, and B. Dale. 2008. Recent process improvements for the ammonia fiber expansion (AFEX) process and resulting reductions in minimum ethanol selling price. Bioresour. Technol. 99: 8429-8435.   DOI   ScienceOn
7 Simola, J., P. Malkavaara, R. Alen, and J. Peltonen. 2000. Scanning probe microscopy of pine and birch kraft pulp fibres. Polymer 41: 2121-2126.   DOI   ScienceOn
8 Simola-Gustafsson, J., B. Hortling, and J. Peltonen. 2001. Scanning probe microscopy and enhanced data analysis on lignin and elemental chlorine-free or oxygen-delignified pine kraft pulp. Colloid Polym. Sci. 279: 221-231.   DOI   ScienceOn
9 Sun, X. F., F. Xu, R. C. Sun, P. Flower, and M. S. Baird. 2005. Charateristics of degraded cellulose obtained from steam exploded wheat straw. Carbohydr. Res. 340: 97-106.   DOI   ScienceOn
10 Teymouri, F., L. Laureano-Perez, H. Alizadeh, and B. Dale. 2005. Optimization of the ammonia fiber explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn stover. Bioresour. Technol. 96: 2014-2018.   DOI   ScienceOn
11 Vancov, T. and S. McIntosh. 2011. Alkali pretreatment of cereal crop residues for second generation biofuels. Energ. Fuel. 25: 2754-2763.   DOI   ScienceOn
12 Xu, C., F. Ma, X. Zhang, and S. Chen. 2010. Biological pretreatment of corn stover by Irpex lacteus for enzymatic hydrolysis. J. Agric. Food Chem. 58: 10893-10898.   DOI   ScienceOn
13 Vincent, M., A. L. Pometto III, and J. V. Leeuwen. 2011. Simultaneous saccharification and fermentation of ground corn strover for the production of fuel ethanol using Phanerochaete chrysosporium, Gloeophyllum trabeum, Saccharomyces cerevisiae, and Escherichia coli K011. J. Microbiol. Biotechnol. 21: 703-710.   DOI   ScienceOn
14 Wang, B., X. Wang, and H. Feng. 2010. Deconstructing recalcitrant Miscanthus with alkaline peroxide and electrolyzed water. Bioresour. Technol. 10: 752-760.
15 Wisniewska, S. K., J. Nalaskowski, E. Witka-Jezewska, J. Hupka, and J. D. Miller. 2003. Surface properties of barley straw. Colloids Surf. 29: 131-142.   DOI   ScienceOn
16 Xu, F., C. F. Liu, Z. C. Geng, J. X. Sun, R. C. Sun, B. H. Hei, L. Lin, S. B. Wu, and J. Je. 2006. Characterisation of degraded organosolv hemicellulose from wheat straw. Polym. Degrad. Stab. 91: 1880-1886.   DOI   ScienceOn
17 Yang, B. and C. E. Wyman. 2008. Pretreatment: The key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod. Biorefin. 2: 26-40.   DOI
18 Kim, S. and M. T. Holtzapple. 2005. Lime pretreatment and enzymatic hydrolysis of corn stover. Bioresour. Technol. 96: 1994-2006.   DOI   ScienceOn
19 Kim, S. and M. T. Holtzapple. 2006. Effect of structural features on enzyme digestibility of corn stover. Bioresour. Technol. 97: 583-591.   DOI   ScienceOn
20 Kim, T. H. and Y. Y. Lee. 2005. Pretreatment and fractionation of corn stover by ammonia recycle percolation process. Bioresour. Technol. 96: 2007-2013.   DOI   ScienceOn
21 Lin, L., R. Yan, Y. Liu, and W. Jiang. 2010. In-depth investigation of enzymatic hydrolysis of biomass wastes based on three major components: Cellulose, hemicelluloses and lignin. Bioresour. Technol. 101: 8217-8223.   DOI   ScienceOn
22 Kim, Y., A. Yu, M. Han, G. W. Choi, and B. Chung. 2011. Enhanced enzymatic saccharification of barley straw pretreated by ethanosolv technology. Appl. Biochem. Biotechnol. 163: 143-152.   DOI   ScienceOn
23 Latif, F., K. A. Malik, and J. Puls. 1988. Effect of steam and alkali pretreatment on the enzymatic hydrolysis of plants grown in saline soils. Biomass 17: 105-113.   DOI   ScienceOn
24 Li, Q., Y. C. He, M. Xian, G. Jun, X. Xu, J. M. Yang, and L. Z. Li. 2009. Improving enzymatic hydrolysis of wheat straw using ionic liquid 1-ethyl-3-methyl imidazolium diethyl phosphate pretreatment. Bioresour. Technol. 100: 3570-3575.   DOI   ScienceOn
25 Lin, S. 1992. Methods in Lignin Chemistry. Springer-Verlag, Heidelberg, Germany.
26 Lioyd, T. A. and C. E. Wyman. 2005. Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresour. Technol. 96: 1967-1977.   DOI   ScienceOn
27 Liu, C. and C. E. Wyman. 2005. Partial flow of compressed-hot water through corn stover to enhance hemicellulose sugar recovery and enzymatic digestibility of cellulose. Bioresour. Technol. 96: 1978-1985.   DOI   ScienceOn
28 Liu, L., J. Sun, M. Li, S. Wang, H. Pei, and J. Zhang. 2009. Enhanced enzymatic hydrolysis and structural features of corn stover by $FeCl_3$ pretreatment. Bioresour. Technol. 100: 5853-5858.   DOI   ScienceOn
29 Liu, Z., Y. Ni, P. Fatehi, and A. Saeed. 2011. Isolation and cationization of hemicellulose from pre-hydrolysis liquor of kraft-based dissolving pulp production process. Biomass Bioenerg. 35: 1789-1796.   DOI   ScienceOn
30 Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428.   DOI
31 Montane, D., J. Salvado, and X. Farriol. 1997. Fractionation of wheat straw via steam-explosion pretreatment. Characteristics of the lignin obtained by alkali delignification of the steamed straw. Holzforschung 51: 135-141.   DOI   ScienceOn
32 Montane, D., X. Farriol, J. Salvado, P. Jollez, and E. Chornet. 1998. Fractionation of wheat straw by steam-explosion pretreatment and alkali delignification. Cellulose pulp and byproducts from hemicellulose and lignin. J. Wood Chem. Technol. 18: 171-191.   DOI   ScienceOn
33 Bailey, M. J., P. Bailey, and K. Poutanen. 1992. Interlaboratory testing of methods for xylanase activity. J. Biotechnol. 23: 257-270.   DOI   ScienceOn
34 Banerjee, G., S. Car, J. S. Scott-Craig, M. S. Borrusch, N. Aslam, and J. D. Walton. 2010. Synthetic enzyme mixtures for biomass deconstruction: Production and optimization of a core set. Biotechnol. Bioeng. 106: 707-720.   DOI   ScienceOn
35 Bura, R., R. Chandra, and J. Saddler. 2009. Influence of xylan on the enzymatic hydrolysis of steam-pretreated corn stover and hybrid poplar. Biotechnol. Prog. 25: 315-322.   DOI   ScienceOn
36 Fan, L. T., M. M. Gharpuray, and Y. H. Lee. 1987. Cellulose Hydrolysis. In: Biotechnology Monographs. Springer, Berlin, Germany.
37 Fox, D. J., P. P. Gray, N. W. Dunn, and W. L. Marsden. 1989. Comparison of alkali and steam (acid) pretreatments of lignocellulosic materials to increase enzymic susceptibility: Evaluation under optimised pretreatment conditions. J. Chem. Tech. Biotechnol. 44: 135-146.
38 Gustafsson, J., L. Ciovica, and J. Peltonen. 2003. The ultra structure of spruce kraft pulps studied by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). Polymer 44: 661-670.   DOI   ScienceOn
39 Hong, J., X. Ye, and Y. H. P. Zhang. 2007. Quantitative determination of cellulose accessibility to cellulase based on adsorption of a nonhydrolytic fusion protein containing CBM and GFP with its applications. Langmuir 23: 12535-12540.   DOI   ScienceOn
40 Hendriks, A. T. W. M. and G. Zeeman. 2009. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 100: 10-18.   DOI   ScienceOn
41 Adney, B. and J. Baker. 2008. Measurement of cellulase activities. Laboratory analytical procedure (LAP). Technical Report NREL/TP-510-42628. Available at http://www.nrel.gov/bio mass/pdfs/42628.pdf.
42 Antizar-Ladislao, B. and J. L. Turrion-Gomez. 2008. Secondgeneration biofuels and local bioenergy systems. Biofuels Bioprod. Biorefin. 2: 455-469.   DOI
43 Jeoh, T., C. I. Ishizawa, M. F. Davis, M. E. Himmel, W. S. Adney, and D. K. Johnson. 2007. Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol. Bioeng. 98: 112-122.   DOI   ScienceOn
44 Jeon, B. Y. and D. H. Park. 2010. Improvement of ethanol production by electrochemical redox combination of Zymomonus mobilis and Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 20: 94-100.
45 Kabel, M. A., G. Bos, J. Zeevalking, A. G. J. Voragen, and H. A. Schols. 2007. Effect of pretreatment severity on xylan solubility and enzymatic breakdown of the remaining cellulose from wheat straw. Bioresour. Technol. 98: 2034-2042.   DOI   ScienceOn
46 Kakurakova, M. and R. H. Wilson. 2001. Developments in midinfrared spectroscopy of selected carbohydrates. Carbohydr. Polym. 44: 291-303.   DOI   ScienceOn
47 Kashahara, K., H. Sasaki, N. Donkai, T. Yoshihara, and T. Takagishi. 2001. Modification of tencel with treatment of ferric sodium tartrate complex solution. I. Effect of treatment condition. Cellulose 8: 23-28.   DOI   ScienceOn