• Title/Summary/Keyword: sod gene

Search Result 226, Processing Time 0.028 seconds

Expression of Pea Superoxide Dismutase Gene in Transgenic Cucumber (Cucumis sativus L.) Plants (형질전환 오이(Cucumis sativus L.) 식물체에서 완두 Superoxide Dismutase 유전자의 발현)

  • 김재훈;오승용;이행순;조만현;이은모;우인식;곽상수
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.3
    • /
    • pp.201-206
    • /
    • 1998
  • To develop the fruits of cucumber (Cucumis sativus L.) producing high yields of superoxide dismutase (SOD), the MnSOD cDNA from pea (Pisum sativum) under the control of the cauliflower mosaic virus 35S promoter was introduced into cucumber using Agrobacterium tumefaciens (strain LBA 4404)-mediated transformation. The kanamycin-resistant shoots were selected on the selection medium containing MS basal salt, 1.0 mg/L zeatin, 0.1 mg/L IAA, 300 mg/L claforan, and 100 mg/L kanamycin. After 6 weeks of culture on the selection medium, the shoots were transferred to MS medium containing 0.2 mg/L NAA to induce roots. PCR analysis using the primers for neomycin phosphotransferase (NPTII) gene revealed that three plantlets were transformed. The fruits of one transgenic plant had approximately 3.2-fold higher SOD activity than those of non-transgenic plants. MnSOD isoenzyme band was strongly detected on native gel in fruits of transgenic plants.

  • PDF

Transgenic Tomato Plants That Overexpress Superoxide Dismutase in Fruits (토마토 과실에서 Superoxide Dismutase를 고발현하는 형질전환 식물체)

  • Park, Eun-Jeong;Lee, Haeng-Soon;Kwon, Suk-Yoon;Choi, Kwan-Sam;Kwak, Sang-Soo
    • Journal of Plant Biotechnology
    • /
    • v.29 no.1
    • /
    • pp.7-13
    • /
    • 2002
  • Superoxide dismutase (SOD) plays an important role in cellular defense against oxidative stress in plants. We have developed transgenic tomato plants overexpressing a cassava SOD in fruits. Three transgenic tomato plants (one from cv. Pink forcer and two from cv. Koko) using a new vector system, ASOp :: . mSOD1/pBI101, harboring ascorbate oxidase promoter (ASOp) expressing dominantly in cucumber fruits, CuZnSOD cDNA (mSOD1) isolated from cultured cells of cassava, and nptll gene as a selectable marker were successfully developed. SOD specific activity (units/mg protein) in transgenic fruits of both cultivars was increased with maturation of the fruits. SOD specific activity of well-mature fruits in transgenic Pink forcer and Koko showed approximately 1.6 and 2.2 times higher than control fruits, respectively. The strength of SOD isoenzyme bands well reflected the SOD activity during the fruit maturation. These results suggested that SOD gene was properly introduced into tomato fruits in a fruit-dominant expression manner by ASO promoter.

Expression of Antioxidant Isoenzyme Genes in Rice under Salt Stress and Effects of Jasmonic Acid and ${\gamma}$-Radiation

  • Kim, Jin-Hong;Chung, Byung-Yeoup;Baek, Myung-Hwa;Wi, Seung-Gon;Yang, Dae-Hwa;Lee, Myung-Chul;Kim, Jae-Sung
    • Journal of Applied Biological Chemistry
    • /
    • v.48 no.1
    • /
    • pp.1-6
    • /
    • 2005
  • Analysis of chlorophyll (Chl) fluorescence implicated treatment of 40 mM NaCl decreased maximal photochemical efficiency of photosystem II (PSII) (Fv/Fm), actual quantum yield of PSII (${\Phi}_{PSII}$), and photochemical quenching (qP) in rice, but increased non-photochemical quenching (NPQ). Decreases in Fv/Fm, ${\Phi}_{PSII}$, and qP were significantly alleviated by $30\;{\mu}M$ jasmonic acid (JA), while NPQ increase was enhanced. Transcription levels of antioxidant isoenzyme genes were differentially modulated by NaCl treatment. Expression of cCuZn-SOD2 gene increased, while those of cAPXb, CATb, and CATc genes decreased. JA prevented salt-induced decrease of pCuZn-SOD gene expression, but caused greater decrease in mRNA levels of cAPXa and Chl_tAPX genes. Investigation of vacuolar $Na^+/H^+$ exchanger (NHX2) and 1-pyrroline-5-carboxylate synthetase (P5CS) gene expressions revealed transcription level of NHX2 gene was increased by JA, regardless of NaCl presence, while that of P5CS gene slightly increased only in co-presence of JA and NaCl. Unlike JA, ${\gamma}$-radiation rarely affected expressions of antioxidant isoenzyme, NHX2, and P5CS genes, except for increase in mRNA level of Chl_tAPX and decrease in that of pCuZn-SOD. These results demonstrate enhanced salt-tolerance in JA-treated rice seedlings may be partly due to high transcription levels of pCuZn-SOD, NHX2, and P5CS genes under salt stress.

Isolation of Superoxide Dismutase cDNAS from an Weedy Rice Variety and Transformation of a Cultivated Rice Variety (잡초성벼의 superoxide dismutase cDNA cloning과 재배벼로의 형질전환)

  • Park, Sang-Gyu;Park, Jong-Suk;Lee, Seung-In;Suh, Suk-Chul;Kim, Byung-Keuk;Jo, Youl-Lae;Suh, Hak-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.2
    • /
    • pp.156-161
    • /
    • 2002
  • Two different cDNA clones for superoxide dismutase (SOD) were isolated from an weedy rice variety (Oryza sativa, cv. Bhutan14Ad) and were introduced into a cultivated rice variety (Oryza sativa, cv. Nakdong) in order to develop the environmental stress-resistant rice plants. Sequence analysis of the cloned cDNAS indicated that the deduced amino acid sequence of SOD-A is 88.4% identical to that of SOD-B. Furthermore, the nucleotide sequence of SOD-A is 99.3% identical to that of a Cu/Zn SOD gene of Oryza sativa (GenBank accession No. L36320). The nueleotide sequence of SOD-B was identical to that of the previously published SOD gene (Accession No. D01000). A cultivated rice variety, Nakdong-byeo, was transformed with chimeric SOD genes containing a actin promoter of rice and pin2 terminator using a particle bombardment technique. Transformed calli were selected on an selection medium containing phosphinothricin (PPT). Transgenic rice plants were regenerated from the PPT-resistant calli. PCR analysis with genomic DNAs from transgenic plants revealed that transgenes are introduced into rice genome.

Expression of Superoxide Dismutase Isoenzyme Genes and Enzyme Activities in Rice Irradiated with a High-Dose Gamma Ray (고선량 감마선을 조사한 벼에서 SOD isoenzyme들의 유전자 발현 및 효소활성)

  • Chae Hyo-Seok;Kim Jin-Hong;Chung Byung-Yeoup;Kim Jae-Sung;Wi Seung-Gon;Baek Myung-Hwa;Cho Jae-Young
    • Journal of Life Science
    • /
    • v.16 no.2 s.75
    • /
    • pp.180-185
    • /
    • 2006
  • We investigated relations between physiological damages and gene expression and enzyme activities of superoxide dismutase(SOD) isoenzymes in leaves of rice (Oriza sativa L. cv. Ilpoombyeo) plants irradiated with a high-dose gamma-ray. Gamma-irradiation with 500 Gy caused significant decreases in the contents of protein, chlorophyll and carotenoid in the rice leaves by 24 h, especially reducing the chlorophyll contents up to 26% relative to the control. In contrast, gene expressions of SOD isoenzymes were kept higher in the irradiated leaves until 24 h after the irradiation than in the control and they started to noticeably decrease at 48 h, finally being lower in the irradiated leaves at 72 h than in the control. In the case of enzyme activities of SOD isoenzymes, some CuZn-SOD isoenzymes showed slightly increased activities until 48 h after the irradiation but at 72 h, all isoenzyme activities markedly decreased in the irradiated leaves below the control levels. In conclusion, 500 Gy gamma-irradiation used in the current study caused decreases in the contents of protein, chlorophyll and carotenoid as symptoms for physiological damages. Although such physiological damages were not directly related to the gene expressions and enzyme activities of SOD isoenzymes until 24 h after the irradiation, the damages at 72 h were reasonably attributable to their reduction.

Effect of the Contents Ratio of Panaxadiol Ginsenosides Extracted from Various Compartment of Ginseng on the Transcription of Cu/Zn Superoxide Dismutase Gene (홍삼의 각 부위에서 추출된 Panaxadiol분획의 함량비에 따른 유해산소제거효소(Cu/Zn Superoxide Dismutase) 유도효과)

  • Chang Mun Seog;Choi Kang Ju;Rho Hyune Mo
    • Journal of Ginseng Research
    • /
    • v.23 no.1 s.53
    • /
    • pp.44-49
    • /
    • 1999
  • Cu/Zn superoxide dismutase (SOD1) is a protective enzyme responsible for the dismutat ion of superoxide radicals within the cell by converting superoxide radicals to oxygen and hydrogen peroxide, which is in turn changed to oxygen and water by catalase. Previously, we reported that the panaxadiol (PD) and its ginsenoside $Rb_2$ induced the expression of SOD1 gene through AP2 binding site and its induction. Here, we examined the effect of subfractions of panaxadiol ginsenosides, which were extracted from different parts of ginseng root that possess various ratios of panaxadiol to panaxatriol, on the induction of SOD1 gene expression. To explore this possibility, the upstream regulatory region of SOD1 was linked to the chloramphenicol acetyl transferase (CAT) structural gene and introduced into human hepatoma HepG2 cells. We observed that the transcriptional activation of SOD1 was proportional to the contents ratio of panaxadiol ginsensides. Consistent with this results, the total extract portion prepared from the finely-hairy root, which contains the higher ratio of panaxadiol to panaxatriol about 2.6, increased the SODl transcription about 3 fold. This results suggest that the panaxadiol fraction could induce the SOD1 and total extract of the ginseng finely-hairy root would be a useful material as a functional food for the SOD1 inducer.

  • PDF

Gene Transfer of Cu/ZnSOD to Cerebral Vessels Prevents Subarachnoid Hemorrhage-induced Cerebral Vasospasm

  • Yun, Mi-Ran;Kim, Dong-Eun;Heo, Hye-Jin;Park, Ji-Young;Lee, Ji-Young;Bae, Sun-Sik;Kim, Chi-Dae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.6
    • /
    • pp.327-332
    • /
    • 2005
  • The preventive effects of gene transfer of human copper/zinc superoxide dismutase (Cu/ZnSOD) on the development of cerebral vasospasm after subarachnoid hemorrhage (SAH) were examined usin a rat model of SAH. An experimental SAH was produced by injecting autologous arterial blood twice into the cisterna magna, and the changes in the diameter of the middle cerebral artery (MCA) were measured. Rats subjected to SAH exhibited a decreased diameter with an increased wall thickness of MCA that were significantly ameliorated by pretreatment with diphenyleneiodonium (DPI, $10{\mu}M$), an inhibitor of NAD(P)H oxidase. Furthermore, application of recombinant adenovirus ($100{\mu}l$ of $1{\times}10^{10}$ pfu/ml, intracisternally), which encodes human Cu/ZnSOD, 3 days before SAH prevented the development of SAH-induced vasospasm. Our findings demonstrate that SAH-induced cerebral vasospasm is closely related with NAD(P)H oxidase-derived reactive oxygen species, and these alterations can be prevented by the recombinant adenovirus-mediated transfer of human Cu/ZnSOD gene to the cerebral vasculature.

In vitro Arsanilic Acid Induction of Apoptosis in Rat Hepatocytes

  • Yuan, Hui;Gong, Zhi;Yuan, li-Yun;Han, Bo;Han, Hong-Ryul
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.9
    • /
    • pp.1328-1334
    • /
    • 2006
  • This paper aimed to study the toxicity of arsanilic acid on rat primary hepatocytes in vitro by a modification of the perfusion method. The conditions included concentrations of 0, 1.085, 10.85, 108.5, 1,085 and 10,850 mg/kg arsanilic acid in RPMI 1,640 medium at rat hepatocytes plates respectively, each group had five repeats at $37^{\circ}C$ for 48 h. The rat primary hepatocytes survival ratio, DNA Ladder, activities of glutathione peroxidase (GSH-px), superoxide dismutase (SOD) and catalase (CAT) in hepatocytes, activity of SOD in the medium and the expression of gene bax in hepatocytes were measured at 12 h, 24 h and 48 h respectively. The results showed that arsanilic acid decreased the activities of GSH-px and SOD, and increased the activity of CAT in all dosages, and affected as positive DNA ladder. Although the SOD activities of both hepatocytes and medium in 1.085 mg/L arsanilic acid were significantly lower than the base line at 12 h, CAT activity in 10.85 mg/L arsanilic acid was significantly higher than the base line at 48 h, and all of the DNA ladders were positive, which means 1.085 mg/L arsanilic acid induced apoptosis at 24 h. The gene expression of bax was significantly upregulated in 1.085 mg/L arsanilic acid or higher for 24 h.The parameters in 1,085 mg/L and 10,850 mg/L arsanilic acid had more severe changes than the others at any time indicating that these levels of arsanilic acid were toxic hazards for hepatocyte survival. It was concluded that arsanilic acid induced a dosage- and time-dependent gene expression of bax, 1.085 mg/L arsanilic acid could be involved in rat liver cell apoptosis at 24 h. Arsanilic acid as additives in livestock feed could present potential toxic implications for farm animals.

Predominant Genotypes and Alleles of Two Functional Polymorphisms in the Manganese Superoxide Dismutase Gene are Not Associated with Thai Cervical or Breast Cancer

  • Attatippaholkun, Watcharee;Wikainapakul, Kornwipa
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.6
    • /
    • pp.3955-3961
    • /
    • 2013
  • Background: Defects of manganese superoxide dismutase (MnSOD) have long been implicated in generation of oxidative stress and risk susceptibility to various cancers. Two functional polymorphisms within the MnSOD gene, including the Val-9Ala of the mitochondrial targeting sequence (MTS) and the Ile58Thr of the exon-3, have been proposed to reduce its enzyme activity and antioxidant potential. Materials and Methods: A high-throughput multiplex SNaPshot$^{(R)}$ system was developed herein for simultaneous analyses of Val-9Ala and Ile58Thr in a single reaction. Genomic DNA extracted from each whole blood sample of 248 patients including 107 with cervical cancer and 141 with breast cancer and from 136 healthy women as controls was analyzed by the multiplex SNaPshot$^{(R)}$ system. Results: The Val/Val, Val/Ala genotypes and the Val allele of the MTS were predominant in patients with cervical or breast cancer as well as healthy women in Thailand. The Ile/Ile genotype and the Ile allele of the exon-3 were found in all of them whereas none of the Ile/Thr, the Thr/Thr genotypes and the Thr allele was detected. Genotypic association of both Val-9Ala and Ile58Thr polymorphisms with cervical cancer and breast cancer of these patients comparing to healthy women was not statistically significant (p<0.05). Conclusions: The Val/Val, Val/Ala genotypes and the Val allele of the MTS were found predominantly but the Ile/Ile genotype and the Ile allele of the exon-3 were detected in patients with cervical cancer, breast cancer and healthy women in Thailand. These two functional polymorphisms (Val-9Ala and Ile58Thr) in MnSOD gene did not associate with susceptibility risk of these cancer patients in Thailand.

Different Association of Manganese Superoxide Dismutase Gene Polymorphisms with Risk of Prostate, Esophageal, and Lung Cancers: Evidence from a Meta-analysis of 20,025 Subjects

  • Sun, Guo-Gui;Wang, Ya-Di;Lu, Yi-Fang;Hu, Wan-Ning
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.3
    • /
    • pp.1937-1943
    • /
    • 2013
  • Altered expression or function of manganese superoxide dismutase (MnSOD) has been shown to be associated with cancer risk but assessment of gene polymorphisms has resulted in inconclusive data. Here a search of published data was made and 22 studies were recruited, covering 20,025 case and control subjects, for meta-analyses of the association of MnSOD polymorphisms with the risk of prostate, esophageal, and lung cancers. The data on 12 studies of prostate cancer (including 4,182 cases and 6,885 controls) showed a statistically significant association with the risk of development in co-dominant models and dominant models, but not in the recessive model. Subgroup analysis showed there was no statistically significant association of MnSOD polymorphisms with aggressive or nonaggressive prostate cancer in different genetic models. In addition, the data on four studies of esophageal cancer containing 620 cases and 909 controls showed a statistically significant association between MnSOD polymorphisms and risk in all comparison models. In contrast, the data on six studies of lung cancer with 3,375 cases and 4,050 controls showed that MnSOD polymorphisms were significantly associated with the decreased risk of lung cancer in the homozygote and dominant models, but not the heterozygote model. A subgroup analysis of the combination of MnSOD polymorphisms with tobacco smokers did not show any significant association with lung cancer risk, histological type, or clinical stage of lung cancer. The data from the current study indicated that the Ala allele MnSOD polymorphism is associated with increased risk of prostate and esophageal cancers, but with decreased risk of lung cancer. The underlying molecular mechanisms warrant further investigation.