DOI QR코드

DOI QR Code

Isolation of Superoxide Dismutase cDNAS from an Weedy Rice Variety and Transformation of a Cultivated Rice Variety

잡초성벼의 superoxide dismutase cDNA cloning과 재배벼로의 형질전환

  • 박상규 (대구대학교 생명환경학부) ;
  • 박종석 (농업과학기술원 생물자원부) ;
  • 이승인 (농업과학기술원 생물자원부) ;
  • 서석철 (농업과학기술원 생물자원부) ;
  • 김병극 (영남대학교 생물산업공학부) ;
  • 조윤래 (영남대학교 생물산업공학부) ;
  • 서학수 (영남대학교 생물자원학부)
  • Published : 2002.06.30

Abstract

Two different cDNA clones for superoxide dismutase (SOD) were isolated from an weedy rice variety (Oryza sativa, cv. Bhutan14Ad) and were introduced into a cultivated rice variety (Oryza sativa, cv. Nakdong) in order to develop the environmental stress-resistant rice plants. Sequence analysis of the cloned cDNAS indicated that the deduced amino acid sequence of SOD-A is 88.4% identical to that of SOD-B. Furthermore, the nucleotide sequence of SOD-A is 99.3% identical to that of a Cu/Zn SOD gene of Oryza sativa (GenBank accession No. L36320). The nueleotide sequence of SOD-B was identical to that of the previously published SOD gene (Accession No. D01000). A cultivated rice variety, Nakdong-byeo, was transformed with chimeric SOD genes containing a actin promoter of rice and pin2 terminator using a particle bombardment technique. Transformed calli were selected on an selection medium containing phosphinothricin (PPT). Transgenic rice plants were regenerated from the PPT-resistant calli. PCR analysis with genomic DNAs from transgenic plants revealed that transgenes are introduced into rice genome.

냉해나 한발등의 환경스트레스에 대해 저항성을 유발하는 유전자를 환경스트레스에 강한 잡초성벼로부터 선발하고 이들 유전자를 재배벼에 도입하여 도입유전자 산물의 과량 발현을 통해 냉해나 한발 등에 대한 저항성이 향상된 벼를 선발하고자 하였다. 잡초성벼인 Bhutan 14Ad로부터 냉해 및 한발 저항성 유전자로 알려진 superoxide dismutase (SOD) cDNA를 분리하고자 mRNA를 분리하고 이 분리된 mRNA를 이용해 reverse transcriptase PCR방법으로 SOD cDNA를 cloning 하였다. 그 결과 2종의 SOD cDNA가 cloning되어 SOD-A, SOD-B로 명명하였다. 이들 cDNA의 염기서열을 결정한 결과 이들은 아미노산 서열 상동성이 88.4%를 나타내었으며, SOD-A는 Oryza sativa 계열의 Cu/Zn SOD유전자인 GenBank accession No. L36320와 99.3% 동일하였으며, SOD-B는 accession No. D01000과 100% 동일하였다. 이들 SOD-A와 SOD-B cDNA를 재배벼인 낙동벼에 형질전환하여 형질전환체 벼를 선발하였으며, 이들 형질전환체 벼의 냉해저항성및 한발저항성 검정을 통해 저항성이 향상된 형질전환체 벼를 선발하고 있다.

Keywords

References

  1. Fowdon, L., Mansfield, T., and Stoddart, J. (1993) In Plant Adaptation to Environmental stress, CHAPMAN & HALL, N.Y.
  2. Wise, R. R. and Naylor, A. W. (1987) Chilling-enhanced photooxidation; The peroxidative destruction of lipids during chilling injury to photosynthesis and ultrastructure, Plant Physiol. 83, 272-277 https://doi.org/10.1104/pp.83.2.272
  3. MaKersie, B. D. and Leshem, Y. Y. (1994) In Stress and stress coping in cultivated plants. p383. Kluwer academic publishers, Dordrecht
  4. Rao, M. V., Paliyath, G., and Ormrod, D. P. (1996) Ultraviolet-B and ozone-induced biochemical changes in antioxidant enzyme of Arabidopsis thaliana, Plant Physiol. 110, 125-136 https://doi.org/10.1104/pp.110.1.125
  5. Scandalios, J. G. (1993) Oxygen stress and superoxide dismutases, Plant Physiol. 101, 7-12 https://doi.org/10.1104/pp.101.1.7
  6. Anderson, M. D., Prasad, T. K. and Stewart C. R. (1995) Changes in isozyme profiles of catalase, peroxidase, and glutathione reductase during acclimation to chilling in rnesocotyls of maize seedlings, Plant Physiol. 109, 1247-1257 https://doi.org/10.1104/pp.109.4.1247
  7. Asada, K. and Tsuji, H. (1995) Changes in organelle superoxide dismutase isozyme during air adaptation of submerged rice seedlings; differential behavior of isozymes in plastids and mitochondria, Planta 196, 606-613
  8. Sen Gupta, A., Heinen, J. L., Holaday, A. S., Burke, J. J. and Allen, R. D. (1993) Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase, Proc. Natl. Acd. Sci. USA. 90, 1629-1633 https://doi.org/10.1073/pnas.90.4.1629
  9. McKersie, B. D., Chen, Y. Debeus, M., Bowley, S. R., Bowler, C., Inze, D., D'Halluim, K. and Botterman, K. (1993) Superoxide dismutase enhances tolerance to freezing stress in transgenic alfalfa(Medicago sativa L.), Plant Physiol. 103, 1155-1163 https://doi.org/10.1104/pp.103.4.1155
  10. Allen, R. D. (1995) Dissection of oxidative stress tolerance using transgenic plants, Plant Physiol. 107, 1049-1054 https://doi.org/10.1104/pp.107.4.1049
  11. Pinhero, R. G., Rao, M. V., Paliyath, G., Murr, D. P. and Fletcher, R. A. (1997) Changes in activities of antioxidant enzymes and their relationship to genetic and paclobutrazol-induced chilling tolerance of maize seedlings, Plant Physiol. 114, 695-704 https://doi.org/10.1104/pp.114.2.695
  12. Mullineaux, P. M. (1992) Genetically engineered plants for herbicide resistance. In Plant Genetic Manipulation for Crop Protection. Gatehouse, A. M. R., Hilder, V. A., and Boulter, D. eds., p.75-107. CAB International, Wallingford
  13. Suh, H. S., Suh, J. P., Ahn, S. N., and Moon, H. P. (1999) QTL analysis on cold tolerance at seedling stage of Korean weedy rice, Korean J. Breeding 31, 434-439
  14. Prescott, C and Martin, M (1987) A rapid method for the quantitative assessment of levels of specific mRNAs in plants, Plant Mol. Biol. Rep. 5, 222-234
  15. Sakamoto, A., Ohsuga, H. and Tanaka, K. (1992) Nucleotide sequences of two cDNA clones encoding different Cu/Zn-superoxide dismutases expressed in developing rice seed(Oryza sativa L.), Plant Mol. Biol. 19, 323-327 https://doi.org/10.1007/BF00027355
  16. Fitch, W. M. and Ayala, F. J. (1994) The superoxide dismutase molecular clock revisited, Proc. Natl. Acad. Sci. USA, 91, 6802-6807 https://doi.org/10.1073/pnas.91.15.6802
  17. Kaminaka, H., Morita, S., Yokoi, H., Masumura, T. and Tanaka, K. (1997) Molecular cloning and characterization of a cDNA for plastidic copper/zinc-superoxide dismutase in rice(Oryza sativa L.), Plant Cell Physiol. 38, 65-69 https://doi.org/10.1093/oxfordjournals.pcp.a029086
  18. Sambrook, J., Fritsch, E. F. and Maniatis, T. (1989) In Molecular Cloning; A laboratory manual. 2nd ed. Cold Spring Harbor laboratory Press
  19. Klein, T. M., Knowlton, S. and Arentzen, R. (1991) Gene transfer by particle bombardment. In Plant Tissue Culture Manual, pp D1:1-12, Lindsey, K. ed., Kluwer Academic Publishers, The Netherlands
  20. Heiser, W. (1992) Optimization of biolistic transformation using the helium-driven PDS-1000/He system, BioRad Bulletin. 1688, 1-7
  21. Lee, H. Y., Lee, C. H., Kim, H. I., Han, W. D., Choi, J. E., Kim, J. H., and Lim, Y. P. (1998) Development of bialaphos-resistant transgenic rice using Agrobacterium tumefaciens, Kor. J. Plant Tissue Culture. 25, 283-288
  22. Park, S. and Ryu, J. B. (1998) Clone identification of Cudraria tricuspidata and Hibiscus syriacus by using PCR and Southern hybridization, Agric. Chem. and Biotech. 41, 42-46
  23. Pan, S. M. and Huang, G. B (1994) Cloning and expression of CuZnSOD from rice, (unpublished GenBank Accession No. L36320)
  24. Kanematsu, S. and Asada, K. (1989) Cu-Zn-superoxide dismutase in rice: occurrence of an active, monomeric enzyme and two types of isozyme in leaf and nonphotosynthetic tissue, Plant Cell Physiol. 30, 381-391
  25. Kaminaka, H., Morita, S., Tokumoto, M., Yokoyama, H., Masumura, T., and Tanaka, K. (1999) Molecular cloning and characterization of a cDNA for an iron-superoxide dismutase .in rice (Oryza sativa L.). Biosci. Biotechnol. Biochem. 63, 302-308 https://doi.org/10.1271/bbb.63.302
  26. Tereda, R. and Shimamoto, K. (1990) Expression of CaMV 35S-GUS gene in transgenic rice plants, MoI. Gen. Genet. 220, 389-392 https://doi.org/10.1007/BF00391743
  27. McElroy, D., Zhang, W., Cao, J., and Wu, R. (1990) Isolation of an efficient actin promoter for use in rice transformation, Plant Cell, 2, 163-171 https://doi.org/10.1105/tpc.2.2.163
  28. Park, S. and Thornburg, R. W. (1996) Loss of specific sequences in a natural variant of potato proteinase inhibitor II gene results in a loss of wound-inducible gene expression, Agric. Chem. and Biotechnol. 39, 104-111
  29. Wen, F., Peng, J. Lister, R. M., and Hodge, T. K. (1991) A procedure for regenerating Japonica and Indica varieties of rice from protoplasts, Plant Mol. Biol. Rep. 9, 308-321 https://doi.org/10.1007/BF02672007