• Title/Summary/Keyword: social media big data

Search Result 288, Processing Time 0.023 seconds

Destination Image Analysis of Daegu Using Social Network Analysis: Social Media Big Data (사회연결망 분석을 활용한 대구의 관광지 이미지 분석: 온라인 빅데이터를 중심으로)

  • Seo, Jung-A;Oh, Ick Keun
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.7
    • /
    • pp.443-454
    • /
    • 2017
  • A positive destination image has an impact on the tourist arrivals and economic growth of the tourist destination. Recently, the content generated by sharing tourist experiences and destination information on the internet has been increasing. The online content has the potential to become a major tourist decision source and provide more in-depth materials and richer content to extract destination image, insight and tourist's perceptions of the destination. This study was designed to explore the destination image of Daegu online and draw lessons for successful image management in an era of big data. Text mining approach and social network analysis were conducted to extract destination image determining elements and assess the influence of the elements. The result showed that destination image elements related to tourist infra-structures and culture, history and art affected the overall destination image of Daegu. Destination marketers should make an effort to grasp these precise destination image and seek ways to boost competitiveness as a tourist destination.

A Study on the Spatial Patterns of Tweet Data for Urban Areas by Time - A Case of Busan City - (도시 지역 트윗 데이터의 시간대별 공간분포 특성 - 부산광역시를 사례로 -)

  • Ku, Cha Yong
    • Journal of Cadastre & Land InformatiX
    • /
    • v.46 no.2
    • /
    • pp.269-281
    • /
    • 2016
  • The process of spatial big data, such as social media, is being paid more attention in the field of spatial information in recent years. This study, as an example of spatial big data analysis, analyzed the spatial and temporal distribution of Tweet data based on the location and time information. In addition, the characteristics of its spatial pattern by times were identified. Tweet data in Busan city are collected, processed, and analyzed to identify the characteristics of the temporal and spatial pattern. Then, the results of Tweet data analysis were compared with the characteristics of the land type. This study found that spatial pattern of tweeting in the city was associated with given time periods such as daytime and nighttime in both weekdays and weekends. The spatial distribution patterns of individual time periods were compared with the characteristics of the land for the spatially concentrated area. The results of this study showed that tweeted data would be related to different spatial distribution depending on the time, which potentially reflects the daily pattern and characteristics of the land type of urban area to some extent. This study presented the possible incorporation of social media data, e. g. Tweet data, into the field of spatial information. It is expected that there will be more advantage to use a variety of social media data in areas such as land planning and urban planning.

Research on public sentiment of the post-corona new normal: Through social media (SNS) big data analysis (포스트 코로나 뉴노멀에 대한 대중감성 연구: 소셜미디어(SNS) 빅데이터 분석을 통해)

  • Ann, Myung-suk
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.209-215
    • /
    • 2022
  • In this study, detailed factors of public sentiment toward the 'post-corona new normal' were examined through social media big data sentiment analysis. Thus, it is to provide basic data to preemptively cope with the post-COVID-19 era. For data collection and analysis, the emotional analysis program of 'Textom', a big data analysis program, was used. The data collection period is one year from October 5, 2020 to October 5, 2021, and the collection channels are set as blogs, cafes, Twitter, and Facebook on Daum and Naver. The original data edited and refined a total of 3,770 collected texts from this channel were used for this study. The conclusion is as follows. First, there is a high level of interest and liking for the 'post-corona new normal'. In other words, it can be seen that optimism such as daily recovery, technological growth, and expectations for a new future took the lead at 77.62%. Second, negative emotions such as sadness and rejection are 22.38% of the total, but the intensity of emotions is 23.91%, which is higher than the ratio, suggesting that these negative emotions are intense. This study has a contribution to the detailed factor analysis of the public's positive and negative emotions through big data analysis on the 'post-corona new normal'.

A Study on Space Consumption Behavior of Contemporary Consumers -Focusing on Analysis of Social Media Big Data- (현대 소비자의 공간소비행동에 관한 연구 -소셜미디어 데이터 분석을 중심으로-)

  • Ahn, Suh Young;Koh, Ae-Ran
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.44 no.5
    • /
    • pp.1019-1035
    • /
    • 2020
  • This study examines the millennial generation, who express themselves and share information on social media after experiencing constantly changing 'hot places' (places of interest) in contemporary cities, with the goal of analyzing space consumption behaviors. Data were collected via an Instagram crawler application developed with Python 3.4 administered to 19,262 posts using the term 'hot places' from November 1 and December 15, 2019. Issues were derived from a text mining technique using Textom 2.0; in addition, semantic network analysis using Ucinet6 and the NetDraw program were also conducted. The results are as follows. First, a frequency analysis of keywords for hot places indicated words frequently found in nouns were related to food, local names, SNS and timing. Words related to positive emotions felt in experience, and words related to behavior in hot places appeared in predicate. Based on importance, communication is the most important keyword and influenced all issues. Second, the results of visualization of semantic network analysis revealed four categories in the scope of the definition of "hot place": (1) culinary exploration, (2) atmosphere of cafés, (3) happy daily life of 'me' expressed in images, (4) emotional photos.

A Study on Hotel Customer Reputation Analysis based on Big Data (빅 데이터 기반 호텔고객 평판 분석에 관한 연구)

  • Kong, Hyo-Soon;Song, Eun-Jee
    • Journal of Digital Contents Society
    • /
    • v.15 no.2
    • /
    • pp.219-225
    • /
    • 2014
  • Competition between corporations is getting more intense, so they need customer feedback in order to fulfill an effective management. Recently, SNS (Social Network Service) such as Twitter and Facebook has grown dramatically because of smart phones. Social media like Twitter and Facebook let customers to express their needs, and using big data such as data on SNS is a very effective method for getting customer's feedback. Collecting and analyzing social big data are operated by Buzz monitoring system. This research suggests how to utilize big data for getting customer's feedback on hotel CRM(Customer Relationship Management), which considers customer itself as asset of business. This paper demonstrates the research of buzz monitoring system that analyzes big data, and presents results of hotel customer reputation using buzz monitoring system. It would analyze the result from the hotel customer reputation, and research the implication in this paper.

A Study on the Change of Tourism Marketing Trends through Big Data

  • Se-won Jeon;Gi-Hwan Ryu
    • International journal of advanced smart convergence
    • /
    • v.13 no.2
    • /
    • pp.166-171
    • /
    • 2024
  • Recently, there has been an increasing trend in the role of social media in tourism marketing. We analyze changes in tourism marketing trends using tourism marketing keywords through social media networks. The aim is to understand marketing trends based on the analyzed data and effectively create, maintain, and manage customers, as well as efficiently supply tourism products. Data was collected using web data from platforms such as Naver, Google, and Daum through TexTom. The data collection period was set for one year, from December 1, 2022, to December 1, 2023. The collected data, after undergoing refinement, was analyzed as keyword networks based on frequency analysis results. Network visualization and CONCOR analysis were conducted using the Ucinet program. The top words in frequency were 'tourists,' 'promotion,' 'travel,' and 'research.' Clusters were categorized into four: tourism field, tourism products, marketing, and motivation for visits. Through this, it was confirmed that tourism marketing is being conducted in various tourism sectors such as MICE, medical tourism, and conventions. Utilizing digital marketing via online platforms, tourism products are promoted to tourists, and unique tourism products are developed to increase city branding and tourism demand through integrated tourism content. We identify trends in tourism marketing, providing tourists with a positive image and contributing to the activation of local tourism.

Research of Emotion Model on Disaster and Safety based on Analyzing Social Media (소셜미디어 분석기반 재난안전 감성모델 연구)

  • Choi, Seon Hwa
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.6
    • /
    • pp.113-120
    • /
    • 2016
  • People use social media platforms such as Twitter to leave traces of their personal thoughts and opinions. In other words, social media platforms retain the emotions of the people as it is, and accurately understanding the emotions of the people through social media will be used as a significant index for disaster management. In this research, emotion type modeling method and emotional quotient quantification method will be proposed to understand the emotions present in social media platforms. Emotion types are primarily analyzed based on 3 major emotions of affirmation, caution, and observation. Then, in order to understand the public's emotional progress according to the progress of disaster or accident and government response in detail, negative emotions are broken down into anxiety, seriousness, sadness, and complaint to enhance the analysis. Ultimately, positive emotions are further broken down into 3 more emotions, and Russell emotion model was used as a reference to develop a model of 8 primary emotions in order to acquire an overall understanding of the public's emotions. Then, the emotional quotient of each emotion was quantified. Based on the results, overall emotional status of the public is monitored, and in the event of a disaster, the public's emotional fluctuation rate could be quantitatively observed.

A Study on Enhancement Method of Public Perception about Geoscience using Big Data Analysis: Focusing on Media Article (지질자원기술 빅데이터 분석을 통한 국민 인식 제고 방안 연구 : 언론 기사 중심으로)

  • Kim, Chan Souk
    • Economic and Environmental Geology
    • /
    • v.55 no.3
    • /
    • pp.273-280
    • /
    • 2022
  • The purpose of this study is to explore the social perception on geoscience using a big data analysis and to propose a way to enhance people's perception on geoscience. For this, 5,044 media articles including geoscience produced by 54 media companies from January 1, 2010 to April 14, 2022. were analyzed. Big data analyses were applied. The results of analyses are as follows: Media articles consist of key words of research institute, some countries of America, China and Japan, City of Pohang, CEO of KIGAM. And geology, industry, development of mineral resources, environment, energy, nuclear power, and groundwater are highlighted as key words. Also, it is confirmed that topics related to geoscience such as expert, environment and research institute are not individually isolated, but interconnected and linked to topics in the center of future, industry, and global. Based on this result, ways to enhance people's perception on geoscience were discussed.

Success Factor and Failure Factor of Social Media in Korean Society: Based on the Word Analysis and the Network Analysis on Interview Data (한국사회에서 소셜 미디어의 성공과 실패 요인 분석: 인터뷰 데이터에 대한 어절분석·네트워크 분석을 중심으로)

  • Hong, Juhyun;Kim, Kyung-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.1
    • /
    • pp.74-85
    • /
    • 2019
  • This Study explores the reason why the social media like Cyworld, Iloveschool in Korea in the viewpoint if the layered model by interview. As a result the success factor in the viewpoint of layered model, user used social media for fulfilling the need for linking with other users and the social media offers the customized contents to user. Finally the social media dominated the market in advance. Facebook and Kakao talk are good examples of successful media. The failure factors are to care less about what other users want, to limit the expand of platform and not to copy with the change of the media environment. Iloveschool, Cyworld and Twitter are the examples of failure social media in Korean society. This study highlights the importance of the sensitivity of the change of environment. The expert mentioned the importance of 4th industrial revolution technology like AI, Big data and expected that new technology will emerge and the service will be developed by the change of user's taste.

An Analysis of News Report Characteristics on Archives & Records Management for the Press in Korea: Based on 1999~2018 News Big Data (뉴스 빅데이터를 이용한 우리나라 언론의 기록관리 분야 보도 특성 분석: 1999~2018 뉴스를 중심으로)

  • Han, Seunghee
    • Journal of the Korean Society for information Management
    • /
    • v.35 no.3
    • /
    • pp.41-75
    • /
    • 2018
  • The purpose of this study is to analyze the characteristics of Korean media on the topic of archives & records management based on time-series analysis. In this study, from January, 1999 to June, 2018, 4,680 news articles on archives & records management topics were extracted from BigKinds. In order to examine the characteristics of the media coverage on the archives & records management topic, this study was analyzed to the difference of the press coverage by period, subject, and type of the media. In addition, this study was conducted word-frequency based content analysis and semantic network analysis to investigate the content characteristics of media on the subject. Based on these results, this study was analyzed to the differences of media coverage by period, subject, and type of media. As a result, the news in the field of records management showed that there was a difference in the amount of news coverage and news contents by period, subject, and type of media. The amount of news coverage began to increase after the Presidential Records Management Act was enacted in 2007, and the largest amount of news was reported in 2013. Daily newspapers and financial newspapers reported the largest amount of news. As a result of analyzing news reports, during the first 10 years after 1999, news topics were formed around the issues arising from the application and diffusion process of the concept of archives & records management. However, since the enactment of the Presidential Records Management Act, archives & records management has become a major factor in political and social issues, and a large amount of political and social news has been reported.