• Title/Summary/Keyword: smart materials

Search Result 1,081, Processing Time 0.027 seconds

Smart Polymeric Micelles as Nanocarriers for Gene and Drug Delivery

  • Kataoka, Kazunori
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.54-55
    • /
    • 2006
  • Polymeric micelles, supramolecular assemblies of block copolymers, are useful nanocarriers for the systemic delivery of drugs and genes. Recently, novel polymeric micelles with various functions such as the targetability and stimuli-sensitivity have been emerged as promising carriers that enhance the efficacy of drugs and genes with minimal side effects. This presentation focuses our recent approach to the preparation of functional block copolymers that are useful for constructing smart micellar delivery systems in advanced therapeutics, including chemo-gene therapy. Particular emphasis is placed on the characteristic behaviors of intracellular environment-sensitive micelles that selectively exert drug activity and gene expression in live cells.

  • PDF

Energy Policies and Research/Development Trends in the USA

  • Kirkici, Hulya;Bernstein, Bruce
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.5
    • /
    • pp.197-201
    • /
    • 2010
  • As the world population increases and technology advances, the energy consumption and need for more energy increase. Communities and governments regularly address these needs and set policies for future energy generation and uses. This paper reviews current energy policies of the USA and the current trends in research and development efforts, for sustainable and renewable energy sources. Furthermore, the recent topic of IEEE's Smart Grid initiatives is discussed, and its role in the dielectrics and electrical insulation research is presented.

Aircraft and spacecraft structural analysis with hybrid criterion of smart control

  • C.C., Hung;T., Nguyen
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.6
    • /
    • pp.553-569
    • /
    • 2022
  • In this article, we propose a criterion for ensuring the asymptotic stability of large multiple delays, based on the direct Lyapunov method. Based on this criterion and distributed control scheme, the controllers are synthesized by the PDC to stabilize these large-scale systems with multiple delays. And we focus on the results which shows the high effective by the proposed theory utilized for damage propagation for aircraft structural analysis of composite materials. Finally, the numerical simulations confirmed the effectiveness of the method.

A Study on the Evaluation Criteria for the Performance of Smart Grid Pilot Projects (스마트그리드 시범사업 성과 평가기준 연구)

  • Kim, Hyun-Jae;Park, Chan-Kook
    • Journal of Digital Convergence
    • /
    • v.10 no.8
    • /
    • pp.15-20
    • /
    • 2012
  • South Korea is carrying out and expanding smart grid pilot projects to build a framework for a national smart grid and expand overseas markets. It is important to properly evaluate performance for the projects and further develop related businesses in a more desirable direction. This study is to provide evaluation criteria for the performance of smart grid pilot projects and a basis for further continuous development according to the type of projects. Evaluation criteria were selected through reviews of documental materials and expert discussions. The viability of the proposed draft in the situation of South Korea was examined by expert Delphi surveys. The Delphi surveys were conducted twice, and therefrom drawn were 18 evaluation criteria for 6 evaluation categories.

Intelligent bolt-jointed system integrating piezoelectric sensors with shape memory alloys

  • Park, Jong Keun;Park, Seunghee
    • Smart Structures and Systems
    • /
    • v.17 no.1
    • /
    • pp.135-147
    • /
    • 2016
  • This paper describes a smart structural system, which uses smart materials for real-time monitoring and active control of bolted-joints in steel structures. The goal of this research is to reduce the possibility of failure and the cost of maintenance of steel structures such as bridges, electricity pylons, steel lattice towers and so on. The concept of the smart structural system combines impedance based health monitoring techniques with a shape memory alloy (SMA) washer to restore the tension of the loosened bolt. The impedance-based structural health monitoring (SHM) techniques were used to detect loosened bolts in bolted-joints. By comparing electrical impedance signatures measured from a potentially damage structure with baseline data obtained from the pristine structure, the bolt loosening damage could be detected. An outlier analysis, using generalized extreme value (GEV) distribution, providing optimal decision boundaries, has been carried out for more systematic damage detection. Once the loosening damage was detected in the bolted joint, the external heater, which was bonded to the SMA washer, actuated the washer. Then, the heated SMA washer expanded axially and adjusted the bolt tension to restore the lost torque. Additionally, temperature variation due to the heater was compensated by applying the effective frequency shift (EFS) algorithm to improve the performance of the diagnostic results. An experimental study was conducted by integrating the piezoelectric material based structural health monitoring and the SMA-based active control function on a bolted joint, after which the performance of the smart 'self-monitoring and self-healing bolted joint system' was demonstrated.

A Study on Characteristics of Liquid-Crystal Based Cell for Smart Window (액정 기반 스마트 윈도우용 셀의 특성 연구)

  • Park, Byung-Gyu;Kim, Sun-Keum;Lee, Seung-Woo;So, Soon-Yeol;Lee, Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.4
    • /
    • pp.271-275
    • /
    • 2020
  • Smart windows are used as windows and doors to determine the cooling and heating efficiency of a building. They have characteristics that can increase the energy efficiency of a building, which leads to energy savings. In addition, smart windows can control the amount of light transmitted from the external environment of a building to the interior of a building according to the needs of the user. In this study, a 297×210 ㎟ liquid crystal cell capable of controlling light transmittance was fabricated using a liquid crystal device as an optical shutter. The effect of driving voltage on the transmittance and the effect of the thermal environment on the driving stability were analyzed. We confirmed the applicability of using smart windows as exterior building materials.

A comparative study of dragonfly inspired flapping wings actuated by single crystal piezoceramic

  • Mukherjee, Sujoy;Ganguli, Ranjan
    • Smart Structures and Systems
    • /
    • v.10 no.1
    • /
    • pp.67-87
    • /
    • 2012
  • A dragonfly inspired flapping wing is investigated in this paper. The flapping wing is actuated from the root by a PZT-5H and PZN-7%PT single crystal unimorph in the piezofan configuration. The non-linear governing equations of motion of the smart flapping wing are obtained using the Hamilton's principle. These equations are then discretized using the Galerkin method and solved using the method of multiple scales. Dynamic characteristics of smart flapping wings having the same size as the actual wings of three different dragonfly species Aeshna Multicolor, Anax Parthenope Julius and Sympetrum Frequens are analyzed using numerical simulations. An unsteady aerodynamic model is used to obtain the aerodynamic forces. Finally, a comparative study of performances of three piezoelectrically actuated flapping wings is performed. The numerical results in this paper show that use of PZN-7%PT single crystal piezoceramic can lead to considerable amount of wing weight reduction and increase of lift and thrust force compared to PZT-5H material. It is also shown that dragonfly inspired smart flapping wings actuated by single crystal piezoceramic are a viable contender for insect scale flapping wing micro air vehicles.

Family of smart tuned mass dampers with variable frequency under harmonic excitations and ground motions: closed-form evaluation

  • Sun, C.;Nagarajaiah, S.;Dick, A.J.
    • Smart Structures and Systems
    • /
    • v.13 no.2
    • /
    • pp.319-341
    • /
    • 2014
  • A family of smart tuned mass dampers (STMDs) with variable frequency and damping properties is analyzed under harmonic excitations and ground motions. Two types of STMDs are studied: one is realized by a semi-active independently variable stiffness (SAIVS) device and the other is realized by a pendulum with an adjustable length. Based on the feedback signal, the angle of the SAIVS device or the length of the pendulum is adjusted by using a servomotor such that the frequency of the STMD matches the dominant excitation frequency in real-time. Closed-form solutions are derived for the two types of STMDs under harmonic excitations and ground motions. Results indicate that a small damping ratio (zero damping is the best theoretically) and an appropriate mass ratio can produce significant reduction when compared to the case with no tuned mass damper. Experiments are conducted to verify the theoretical result of the smart pendulum TMD (SPTMD). Frequency tuning of the SPTMD is implemented through tracking and analyzing the signal of the excitation using a short time Fourier transformation (STFT) based control algorithm. It is found that the theoretical model can predict the structural responses well. Both the SAIVS STMD and the SPTMD can significantly attenuate the structural responses and outperform the conventional passive TMDs.

Design of the Compound Smart Material Pump for Brake System of Small·Medium Size UAV (중소형 무인기 브레이크 시스템용 복합형 지능재료펌프 설계)

  • Lee, Jonghoon;Hwang, Jaihyuk;Yang, Jiyoun;Joo, Yonghwi;Bae, Jaesung;Kwon, Junyong
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.3
    • /
    • pp.1-7
    • /
    • 2015
  • In this study, the design of compound smart materials hydraulic pump that can be applied to a small-medium size UAV having a limited space envelope and weight has been conducted. Compound Smart Material Pump(CSMP) proposed in this paper is composed of a pressurize pump and a flow pump for supplying the high pressure and fluid displacement to overcome the disadvantages of the piezoelectric actuator which has a small strain. Though this compound smart material pump has been designed as small size and lightweight as possible, it can sequentially supply the sufficient large flow rate and pressure required for the brake operation. For the design of CSMP, about 2,700 kg (6,000 lb) class fixed wing manned aircraft was selected. Based on the established requirements, the design of the CSMP have been done by strength, vibration, and fluid flow analysis.

Development of Smart Device Module for Perimeter Intrusion Detection (외곽 침입 감지를 위한 스마트 디바이스의 개발)

  • Ryu, Dae-Hyun;Choi, Tae-Wan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.2
    • /
    • pp.363-370
    • /
    • 2021
  • The perimeter intrusion detection system is very important in physical security. In this study, a micro smart device (module) using MEMS sensor was developed in IoT environment for external intrusion detection. The outer intrusion detection system applying the smart device developed in this study is installed in various installation environments, such as barbed wire of various materials and shapes, the city center, the beach, and the mountain, so that it can detect external intrusion and its location as well as false alarms. As a smart sensor that can minimize the false alarm rate and economical construction cost, it is expected that it can be used for the safe operation of major facilities and prevention of disasters and crimes.