Browse > Article
http://dx.doi.org/10.12989/sss.2012.10.1.067

A comparative study of dragonfly inspired flapping wings actuated by single crystal piezoceramic  

Mukherjee, Sujoy (Department of Aerospace Engineering, Indian Institute of Science)
Ganguli, Ranjan (Department of Aerospace Engineering, Indian Institute of Science)
Publication Information
Smart Structures and Systems / v.10, no.1, 2012 , pp. 67-87 More about this Journal
Abstract
A dragonfly inspired flapping wing is investigated in this paper. The flapping wing is actuated from the root by a PZT-5H and PZN-7%PT single crystal unimorph in the piezofan configuration. The non-linear governing equations of motion of the smart flapping wing are obtained using the Hamilton's principle. These equations are then discretized using the Galerkin method and solved using the method of multiple scales. Dynamic characteristics of smart flapping wings having the same size as the actual wings of three different dragonfly species Aeshna Multicolor, Anax Parthenope Julius and Sympetrum Frequens are analyzed using numerical simulations. An unsteady aerodynamic model is used to obtain the aerodynamic forces. Finally, a comparative study of performances of three piezoelectrically actuated flapping wings is performed. The numerical results in this paper show that use of PZN-7%PT single crystal piezoceramic can lead to considerable amount of wing weight reduction and increase of lift and thrust force compared to PZT-5H material. It is also shown that dragonfly inspired smart flapping wings actuated by single crystal piezoceramic are a viable contender for insect scale flapping wing micro air vehicles.
Keywords
piezofan; single-crystal; non-linear vibrations; smart materials; aerodynamics; dragonfly; flapping; micro air vehicles;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Roget, B., Sitaraman, J., Harmon, R., Grauer, J., Hubbard, J. and Humbert, S. (2009), "Computational study of flexible wing ornithopter flight", J. Aircraft, 46(6), 2016-2031.   DOI   ScienceOn
2 Rosenfeld, N.C. and Wereley, N.M. (2009), "Time-periodic stability of a flapping insect wing structure in hover", J. Aircraft, 46(2), 450-464.   DOI   ScienceOn
3 Singh, B. and Chopra, I. (2008), "Insect-based hover-capable flapping wings for micro air vehicles: Experiments and analysis", AIAA J., 46(9), 2115-2135.   DOI   ScienceOn
4 Sitti, M. (2003), "Piezoelectrically actuated four-bar mechanism with two flexible links for micromechanical flying insect thorax", IEEE-ASME Trans. Mech., 8(1), 26-36.   DOI   ScienceOn
5 Sunada, S., Zeng, L.J. and Kawachi, K. (1998), "The relationship between dragonfly wing structure and torsional deformation", J. Theor. Biol., 193(1), 39-45.   DOI   ScienceOn
6 Syaifuddin, M., Park, H.C. and Goo, N.S. (2006), "Design and evaluation of a LIPCA-actuated flapping device", Smart Mater. Struct., 15(5), 1225-1230.   DOI   ScienceOn
7 Thakkar, D. and Ganguli, R. (2006a), "Single-crystal piezoceramic actuation for dynamic stall suppression", Sensor. Actuat. A - phys., 128(1), 151-157.   DOI   ScienceOn
8 Thakkar, D. and Ganguli, R. (2006b), "Use of single crystal and soft piezoceramics for alleviation of flow separation induced vibration in a smart helicopter rotor", Smart Mater. Struct., 15(2), 331-341.   DOI   ScienceOn
9 Toda, M. and Osaka, S. (1979), "Vibrational fan using the piezoelectric polymer PVF2", Proceedings of the IEEE, 67(8), 1171-1173.   DOI
10 VandenBerg, C. and Ellington, C.P. (1997), "The vortex wake of a 'hovering' model hawkmoth", Philos. T. R. Soc. B., 352(1351), 317-328.   DOI   ScienceOn
11 Wait, S.M., Basak, S., Garimella, S.V. and Raman, A. (2007), "Piezoelectric fans using higher flexural modes for electronics cooling applications", IEEE T. Compon. Pack. T., 30(1), 119-128.   DOI
12 Yamamoto, M. and Isogai, K. (2005), "Measurement of unsteady fluid dynamics forces for a mechanical dragonfly model", AIAA J., 43(12), 2475-2480.   DOI   ScienceOn
13 Yang, L.J., Hsu, C.K., Han, H.C. and Miao, J.M. (2009), "Light flapping micro aerial vehicle using electricaldischarge wire-cutting technique", J. Aircraft, 46(6), 1866-1874.   DOI   ScienceOn
14 Yao, K. and Uchino, K.J. (2001), "Analysis on a composite cantilever beam coupling a piezoelectric bimorph to an elastic blade", Sensor. Actuat. A - Phys., 89(3), 215-221.   DOI   ScienceOn
15 Zehetner, C. and Irschik, H. (2008), "On the static and dynamic stability of beams with an axial piezoelectric actuation", Smart Struct. Syst., 4(1), 67-84.   DOI
16 Zeng, K., Pang, Y.S., Shen, L., Rajan, K.K. and Lim, L.C. (2008), "Elastic modulus, hardness and fracture behavior of Pb(Zn1/3Nb2/3)O3-PbTiO3 single crystal", Mater. Sci. Eng. A., 472(1-2), 35-42.   DOI
17 Zhang, J. and Lu, X.Y. (2009), "Aerodynamic performance due to forewing and hindwing interaction in gliding dragonfly flight", Phys. Rev. E., 80(1), 017302-017304.   DOI
18 Zhang, R., Jiang, B. and Cao, W. (2002), "Complete set of material constants of 0.93Pb(Zn1/3Nb2/3)O3-0.07PbTiO3 domain engineered single crystal", J. Mater. Sci. Lett., 21(23), 1877-1879.   DOI   ScienceOn
19 Azuma, A., Azuma, S., Watanabe, I. and Furuta, T. (1985), "Flight mechanics of a dragonfly", J. Exper. Bio., 116(1), 79-107.
20 Ansari, S.A., Zbikowski, R. and Knowles, K. (2006), "Aerodynamic modelling of insect-like flapping flight for micro air vehicles", Prog. Aerosp. Sci., 42(2), 129-172.   DOI   ScienceOn
21 Bao, L., Hu, J.S., Yu, Y.L., Cheng, P., Xu, B.Q. and Tong, B.G. (2006), "Viscoelastic constitutive model related to deformation of insect wing under loading in flapping motion", Appl. Math. Mech.- Eng., 27(6), 741-748.   DOI   ScienceOn
22 Betteridge, D.S. and Archer, R.D. (1974), "A study of the mechanics of flapping wings", Aeronautical Quarterly, 25, 129-142.   DOI
23 Chandar, D.D.J. and Damodaran, M. (2010), "Computation of unsteady low Reynolds number free-flight aerodynamics of flapping wings", J. Aircraft, 47(1), 141-150.   DOI   ScienceOn
24 Chopra, I. (2002), "Review of state of art of smart structures and integrated systems", AIAA J., 40(11), 2145- 2187.   DOI   ScienceOn
25 Chung, H.C., Kummari, K.L., Croucher, S.J., Lawson, N., Guo, S. and Huang, Z. (2008), "Coupled piezoelectric fans with two degree of freedom motion for the application of flapping wing micro aerial vehicles", Sensor. Actuat. A - Phys., 147(2), 607-612.   DOI   ScienceOn
26 Chung, H.C., Kummari, K.L., Croucher, S.J., Lawson, N., Guo, S., Whatmore, R.W. and Huang, Z. (2009), "Development of piezoelectric fans for flapping wing application", Sensor. Actuat. A - Phys., 149(1), 136-142.   DOI   ScienceOn
27 Combes, S.A. and Daniel, T.L. (2003), "Flexural stiffness in insect wings II. Spatial distribution and dynamic wing bending", J. Exper. Bio., 206(17), 2989-2997.   DOI   ScienceOn
28 Cox, A., Monopoli, D., Cveticanin, D., Goldfarb, M. and Garcia, E. (2002), "The development of elastodynamic components for piezoelectrically actuated flapping micro-air vehicles", J. Intell. Mater. Syst. Struct., 13(9), 611-615.   DOI   ScienceOn
29 DeLaurier, J.D. (1993), "An aerodynamic model for flapping-wing flight", Aeronaut. J., 97(964), 125-130.
30 Dickinson, M.H., Lehmann, F.O. and Sane, S.P. (1999), "Wing rotation and the aerodynamic basis of insect flight", Science, 284(5422), 1954-1960.   DOI   ScienceOn
31 Ganguli, R., Gorb, S., Lehmann, F.O., Mukherjee, S. and Mukherjee, S. (2010), "An experimental and numerical study of Calliphora wing structure", Exp. Mech., 50(8), 1183-1197.   DOI   ScienceOn
32 Hsieh, S.R., Shaw, S.W. and Pierre, C. (1994), "Normal modes for large amplitude vibration of a cantilever beam", Int. J. Solids Struct., 31(40), 1981-2014.   DOI
33 Issac, K.K and Agrawal, S.K. (2007), "An investigation into the use of springs and wing motions to minimize the power expended by a pigeon-sized mechanical bird for steady flight", J. Mech. Design., 129(4), 381-389.   DOI   ScienceOn
34 Ke, S., Zhigang, W. and Chao, Y. (2008), "Analysis and flexible structural modeling for oscillating wing utilizing aeroelasticity", Chinese Aeronaut. J., 21(5), 402-410.   DOI
35 Kim, D.K., Han, J.H. and Kwon, K.J. (2009), "Wind tunnel tests for a flapping wing model with a changeable camber using macro-fiber composite actuators", Smart Mater. Struct., 18(2), 024008.   DOI   ScienceOn
36 Kim, D.K., Kim, H.I., Han, J.H. and Kwon, K.J. (2008), "Experimental investigation on the aerodynamic characteristics of a bio-mimetic flapping wing with macro-fiber composites", J. Intell. Mater. Syst. Struct., 19(3), 423-431.   DOI
37 Kim, W.K., Ko, J.W., Park, H.C. and Byun, D. (2009), "Effects of corrugation of the dragonfly wing on gliding performance", J. Theor. Biol., 260(4), 523-530.   DOI   ScienceOn
38 Kim, D.K., Lee, J.S. and Han, J.H. (2011), "Improved aerodynamic model for efficient analysis of flapping wing flight", AIAA J., 49(4), 868-872.   DOI
39 Lee, J.S., Kim, J.K., Kim, D.K. and Han, J.H. (2011), "Longitudinal flight dynamics of bio-inspired ornithopter considering fluid-structure interaction", AIAA J., 34(3), 667-677.
40 Madangopal, R., Khan, Z.A. and Agrawal, S.K. (2005), "Biologically inspired design of small flapping wing air vehicles using four-bar mechanisms and quasi-steady aerodynamics", J. Mech. Design, 127(4), 809-816.   DOI   ScienceOn
41 Nayfeh, A.H. (1973), Perturbation methods, Wiley, New York.
42 Mahmoodi, S.N. and Jalili, N. (2007), "Non-linear vibrations and frequency response analysis of piezoelectrically driven microcantilevers", Int. J. Nonlinear Mech., 42(4), 577-587.   DOI   ScienceOn
43 McIntosh, S.H., Agrawal, S.K. and Khan, Z. (2006), "Design of a mechanism for biaxial rotation of a wing for a hovering vehicle", IEEE/ASME Trans. Mech., 11(2), 145-153.   DOI
44 Mukherjee, S. and Ganguli, R. (2010), "Non-linear dynamic analysis of a piezoelectrically actuated flapping wing", J. Intell. Mater. Syst. Struct., 21(12), 1157-1167.   DOI   ScienceOn
45 Nayfeh, A.H. and Mook, D.T. (1979), Nonlinear oscillations, Wiley, NewYork.
46 Nguyen, V.Q., Syaifuddin, M., Park, H.C., Byun, D.Y., Goo, N.S. and Yoon, K.J. (2008), "Characteristics of an insect-mimicking flapping system actuated by a unimorph piezoceramic actuator", J. Intell. Mater. Syst. Struct., 19(10), 1185-1193.   DOI
47 Nguyen, V.Q., Park, H.C., Goo, N.S. and Byun, D.Y. (2010), "Characteristics of a Beetle's free flight and a flapping-wing system that mimics Beetle flight", J. Bio. Eng., 7(1), 77-86.   DOI   ScienceOn
48 Norberg, U.M. (1985), "Evolution of vertebrate flight: an aerodynamic model for the transient from gliding to active flight", Am. Nat., 126(3), 303-327.   DOI   ScienceOn
49 Pawar, P.M. and Jung, S.N. (2008), "Single-crystal-material-based induced-shear actuation for vibration reduction of helicopters with composite rotor system", Smart Mater. Struct., 17(6), 065009: 1-11.
50 Philps, P.J. East, R.A. and Pratt, N.H. (1981), "An unsteady lifting-line theory of flapping wings with application to the forward flight of birds", J. Fluid Mech., 112(11), 97-125.   DOI
51 Raney, D.L. and Slominski, E.C. (2004), "Mechanization and control concepts for biologically inspired micro aerial vehicles", J. Aircraft, 41(6), 1257-1265.   DOI   ScienceOn
52 Rayner, J.M.V. (1979), "Vortex theory of animal flight. 2. Forward flight of birds", J. Fluid Mech., 91(4), 731-763.   DOI