• Title/Summary/Keyword: smart layer

Search Result 455, Processing Time 0.025 seconds

Characteristics of an electrochromic ECD (electro-chromic device) film in applications for smart windows with a 4-layer structure, a thickness of 0.5 mm (0.5 mm 이내의 두께를 갖는 4층 구조의 스마트 윈도우에 적용되는 전기변색 ECD(electro-chromic device) 필름 제조 및 특성)

  • Nam Il Kim;Geug Tae Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.1
    • /
    • pp.16-21
    • /
    • 2024
  • Using electrochromic devices (ECD), smart window films that can change the colors from tinted state into transparent state by applying an external voltage were manufactured. Polyethylene terephthalate (PET) film was used as a substrate instead of conventional glass, and ECD modules having a total thickness of about 50 ㎛ were manufactured by sequentially introducing an ITO/Ag/ITO electrode layer, a WO3/TIC2 organic discoloration layer, and a Nafion fluorine electrolyte layer. Through a series of sputtering, bar coating, and thermal compression processes, a large scale smart window with a horizontal and vertical length of more than 80 mm was manufactured. When DC 3.5 V was applied, the transmittance decreased from 54 % to 24 % and moreover the color change could be confirmed even with the naked eye. Reversible color change capability at low external voltage implies that external sunlight can be selectively blocked which is effective in terms of energy saving.

A Comparative Study on the Conductivity and Physical Properties of Conductive Materials for Heart Rate Monitoring (심박 모니터링을 위한 전도성 소재의 전도성 및 물성 비교 연구)

  • Kim, Jimin;Kim, Jongjun
    • Journal of Fashion Business
    • /
    • v.22 no.4
    • /
    • pp.118-129
    • /
    • 2018
  • The purpose of this study is to develop ECG electrode materials for the heart rate monitoring smart band, a smart device used for ECG and heart rate measurement. The purpose of the evaluation is to assess properties and conductivity of electrodes of the existing heart rate monitoring smart band, and to determine suitability through a representative conductive sample. Because level of thickness does not differ significantly from value of conductive specimen from thickness of the smart band, it can be used as a conductive electrode. Surface conductivity of conductive samples and smart bands, is expected to be available as electrodes except for conductive film. Also, since the knit have conductivity only in the metal processing layer, it is necessary to use electrodes on the part of the metal processing layer that is conductive when applying the knit. Tensile strength and electrical conductivity of the tensile were generally revealed to have a tendency. Thickness of the specimen that can be used as an electrode for the smart band is suitable for all samples, electrical resistance, conductive woven, conductive knit, and conductive cord. In the case of conductive cord, however, the electrode attached to the human body will not conform to the flat shape of the electrode attached to the human body. Therefore, the conductive woven and the conductive knit will be available as an electrode.

Analyzing Characteristics of the Smart City Governance (스마트시티 거버넌스 특성 분석)

  • LEE, Sang-Ho;LEEM, Youn-Taik
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.2
    • /
    • pp.86-97
    • /
    • 2016
  • This study aims to analyze the characteristics of the smart city governance through the multi-layer governance model, which includes administrative governance(AG), technological governance(TG), and global governance(GG). The results of the smart city governance are as follows. Multi-layered governance was modeled to enable cross-checking of each element of the propelling process and types of governance. AG has transitioned from a public partnership to a public-private people partnership(pppp) through a public-private partnership(ppp). TG has the characteristics of information communication technologies(ICTs) - eco technologies(EcoTs) - Spatial technology convergence including physical center, information software platforms such as the CCTV convergence center, and virtualization such as the cloud data center. GG aims at developing killer applications and ICTs-embedded space with intelligent buildings such as a smart city special zone to enable overseas exports. The smart city roadshow and forum have been developed as a platform for overseas exports with competition as well as cooperation.

Parametric resonance of axisymmetric sandwich annular plate with ER core layer and constraining layer

  • Yeh, Jia-Yi
    • Smart Structures and Systems
    • /
    • v.8 no.5
    • /
    • pp.487-499
    • /
    • 2011
  • The parametric resonance problems of axisymmetric sandwich annular plate with an electrorheological (ER) fluid core and constraining layer are investigated. The annular plate is covered an electrorheological fluid core layer and a constraining layer to improve the stability of the system. The discrete layer annular finite element and the harmonic balance method are adopted to calculate the boundary of instability regions for the sandwich annular plate system. Besides, the rheological property of an electrorheological material, such as viscosity, plasticity, and elasticity can be changed when applying an electric field. When the electric field is applied on the sandwich structure, the damping of the sandwich system is more effective. Thus, variations of the instability regions for the sandwich annular plate with different applying electric fields, thickness of ER layer, and some designed parameters are presented and discussed in this study. The ER fluid core is found to have a significant effect on the location of the boundaries of the instability regions.

Design and Load Map of the Next Generation Convergence Security Framework for Advanced Persistent Threat Attacks

  • Lee, Moongoo
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.2
    • /
    • pp.65-73
    • /
    • 2014
  • An overall responding security-centered framework is necessary required for infringement accidents, failures, and cyber threats. On the other hand, the correspondence structures of existing administrative, technical, physical security have weakness in a system responding to complex attacks because each step is performed independently. This study will recognize all internal and external users as a potentially threatening element. To perform connectivity analysis regarding an action, an intelligent convergence security framework and road map is suggested. A suggested convergence security framework was constructed to be independent of an automatic framework, such as the conventional single solution for the priority defense system of APT of the latest attack type, which makes continuous reputational attacks to achieve its goals. This study suggested the next generation convergence security framework to have preemptive responses, possibly against an APT attack, consisting of the following five hierarchical layers: domain security, domain connection, action visibility, action control, and convergence correspondence. In the domain, the connection layer suggests a security instruction and direction in the domains of administrative, physical and technical security. The domain security layer has consistency of status information among the security domain. A visibility layer of an intelligent attack action consists of data gathering, comparison and decision cycle. The action control layer is a layer that controls the visibility action. Finally, the convergence corresponding layer suggests a corresponding system of before and after an APT attack. The administrative security domain had a security design based on organization, rule, process, and paper information. The physical security domain is designed to separate into a control layer and facility according to the threats of the control impossible and control possible. Each domain action executes visible and control steps, and is designed to have flexibility regarding security environmental changes. In this study, the framework to address an APT attack and load map will be used as an infrastructure corresponding to the next generation security.

Design, Fabrication and Test of Smart Skin Sandwich Specimen (스마트 스킨 샌드위치 시편의 설계, 제작 및 시험 평가)

  • 김용범;김영성;박훈철;윤광준;이재화
    • Composites Research
    • /
    • v.15 no.3
    • /
    • pp.45-51
    • /
    • 2002
  • Smart skin, a multi-layer structure of composed or different materials, was designed and fabricated. Tests and analyses are conducted to study the characteristics of its behavior under compression and bending loads. The designed smart skin failed due to premature buckling before compression failure. It was confirmed that shear moduli of honeycomb core affect structural stability of smart skin. A new test method and device were designed fur better measurement of shear moduli of honeycomb core. Numerical prediction of structural behavior of smart skin by NASTRAN agreed well with experimental data.

Study on the Design of Power MOSFET for Smart LED Driver ICs Package (스마트 LED Driver ICs 패키지용 700 V급 Power MOSFET의 설계 최적화에 관한 연구)

  • Kang, Ey Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.2
    • /
    • pp.75-78
    • /
    • 2016
  • This research was designed 700 level power MOSFET for smart LED driver ICs package. And we analyzed electrical characteristics of the power MOSFET as like breakdown voltage, on-resistance and threshold voltage. Because this research is important optimal design for smart LED ICs package, we designed power MOSFET with design and process parameter. As a result of this research, we obtained $60{\mu}m$ N-drift layer depth, 791.29 V breakdown voltage, $0.248{\Omega}{\cdot}cm^2$ on resistance and 3.495 V threshold voltage. We will use effectively this device for smart LED driver ICs package.

Axisymmetric dynamic instability of polar orthotropic sandwich annular plate with ER damping treatment

  • Yeh, Jia-Yi
    • Smart Structures and Systems
    • /
    • v.13 no.1
    • /
    • pp.25-39
    • /
    • 2014
  • The axisymmetric dynamic instability of polar orthotropic sandwich annular plate combined with electrorheological (ER) fluid core layer and constraining layer are studied in this paper. And, the ER core layer and constraining layer are used to improve the stability of the annular plate system. The boundaries of instability regions for the polar orthotropic sandwich annular plate system are obtained by discrete layer annular finite element and the harmonic balance method. The rheological property of an electrorheological material, such as viscosity, plasticity, and elasticity can be controlled by applying different electric field strength. Thus, the damping characteristics of the sandwich system are more effective when the electric field is applied on the sandwich structure. Additionally, variations of the instability regions for the polar orthotropic sandwich annular plate with different applying electric field strength, thickness of ER layer and some designed parameters are investigated and discussed in this study.

Development of Single-layer-structured Glucose Biosensor

  • Lee, Young-Tae;Kwon, Min Su
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.83-87
    • /
    • 2015
  • In this paper, we fabricated a low-cost glucose sensor with a simpler structure and fabrication process than the existing glucose sensor. The currently used glucose sensor has a three-layer structure with upper, middle, and bottom plates; here, we fabricated a single-layer glucose sensor using only a printing and dispensing process. We successfully fabricated the glucose sensor using a simple method involving the formation of an electrode and insulator layer through a 2- or 3-step printing process on plastic or paper film, followed by the dispensing of glucose oxidase solution on the electrode. Cyclic voltammetry (CV) and cyclic amperometry (CA) measurements were used to evaluate the characteristics of the fabricated single-layer glucose sensor. Also, its sensitivity was analyzed through glucose-controlled blood measurements. Hence, a low-cost single-layer glucose sensor was fabricated with evaluation of its characteristics demonstrating that it has useful application in medicine.

Seismic protection of base isolated structures using smart passive control system

  • Jung, Hyung-Jo;Choi, Kang-Min;Park, Kyu-Sik;Cho, Sang-Won
    • Smart Structures and Systems
    • /
    • v.3 no.3
    • /
    • pp.385-403
    • /
    • 2007
  • The effectiveness of the newly developed smart passive control system employing a magnetorheological (MR) damper and an electromagnetic induction (EMI) part for seismic protection of base isolated structures is numerically investigated. An EMI part in the system consists of a permanent magnet and a coil, which changes the kinetic energy of the deformation of an MR damper into the electric energy (i.e. the induced current) according to the Faraday's law of electromagnetic induction. In the smart passive control system, the damping characteristics of an MR damper are varied with the current input generated from an EMI part. Hence, it does not need any control system consisting of sensors, a controller and an external power source. This makes the system much simpler as well as more economic. To verify the efficacy of the smart passive control system, a series of numerical simulations are carried out by considering the benchmark base isolated structure control problems. The numerical simulation results show that the smart passive control system has the comparable control performance to the conventional MR damper-based semiactive control system. Therefore, the smart passive control system could be considered as one of the promising control devices for seismic protection of seismically excited base isolated structures.