Browse > Article
http://dx.doi.org/10.12989/sss.2011.8.5.487

Parametric resonance of axisymmetric sandwich annular plate with ER core layer and constraining layer  

Yeh, Jia-Yi (Department of Information Management, Chung Hwa University of Medical Technology)
Publication Information
Smart Structures and Systems / v.8, no.5, 2011 , pp. 487-499 More about this Journal
Abstract
The parametric resonance problems of axisymmetric sandwich annular plate with an electrorheological (ER) fluid core and constraining layer are investigated. The annular plate is covered an electrorheological fluid core layer and a constraining layer to improve the stability of the system. The discrete layer annular finite element and the harmonic balance method are adopted to calculate the boundary of instability regions for the sandwich annular plate system. Besides, the rheological property of an electrorheological material, such as viscosity, plasticity, and elasticity can be changed when applying an electric field. When the electric field is applied on the sandwich structure, the damping of the sandwich system is more effective. Thus, variations of the instability regions for the sandwich annular plate with different applying electric fields, thickness of ER layer, and some designed parameters are presented and discussed in this study. The ER fluid core is found to have a significant effect on the location of the boundaries of the instability regions.
Keywords
parametric resonance; dynamic instability; electrorheological; annular plate; discrete layer annular finite element;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Bolotin, V.V. (1964), The dynamic stability of elastic system, Holden-Day San Francisco.
2 Chen Y.R. and Chen L.W. (2004), "Axisymmetric parametric resonance of polar orthotropic sandwich annular plates", Compos. Struct., 65(3-4), 269-277.   DOI   ScienceOn
3 Chen, L.W. and Hwang, J.R. (1988), "Axisymmetric dynamic stability of polar orthotropic thick circular plates", J. Sound Vib., 125(3), 555-563.   DOI   ScienceOn
4 Chen, L.W. and Hwang, J.R. (1988), "Axisymmetric dynamic stability of transverse isotropic Mindlin circular plates", J. Sound Vib., 121(2), 307-315.   DOI   ScienceOn
5 Coulter, J.P. (1993), "Engineering application of electrorheological materials", J. Intell. Mater. Syst. Struct., 4(2), 248-259   DOI   ScienceOn
6 Don, D.L. (1993), An investigation of electrorheological material adoptive structure, Master's Thesis Lehigh University Bethlehem Pennsylvania.
7 Evan-Iwanowski, R.M. (1976), Resonance oscillations in mechanical systems, Amsterdam Elsevier.
8 Ilyasov, M.H. and Akoz, A.Y. (2000), "The vibration and dynamic stability of viscoelastic plates", Int. J. Eng. Sci., 38(6), 695-714.   DOI   ScienceOn
9 Kang, Y.K., Kim, J. and Choi, S.B. (2001), "Passive and active damping characteristics of smart electrorheological composite beams", Smart Mater. Struct., 10(4), 724-729.   DOI   ScienceOn
10 Oyadiji, S.O. (1996), "Application of electro-rheological fluids for constrained layer damping treatment of structures", J. Intell. Mater. Syst. Struct., 7, 541-549.   DOI   ScienceOn
11 Roy, P.K. and Ganesan, N. (1993), "A vibration and damping analysis of circular plates with constrained damping layer treatment", Comput. Struct., 49(2), 269-274.   DOI   ScienceOn
12 Stevens, K.K. (1966), "On the parametric excitation of a viscoelastic column", A.I.A.A. J., 4(12), 2111-2116.
13 Stevens, K.K. (1969), "Transverse vibration of a viscoelastic column with initial curvature under periodic axial load", J. Appl. Mech - T ASME., 36(4), 814-818.   DOI
14 Tani, J. and Doki, H. (1982), "Dynamic stability of orthotropic annular plates under pulsating redial loads", J. Acoust. Soc. Am., 69, 1688-1694.
15 Tani, J. and Nakamura, T. (1980), "Dynamic stability of annular plates under pulsating torsion", J. Appl. Mech - T ASME., 47(3), 595-600.   DOI
16 Touati, D. and Cederbaum, G. (1994), "Dynamic stability of nonlinear viscoelastic plates", Int. J. Solids Struct., 31(17), 2367-2376.   DOI   ScienceOn
17 Weiss, K.D., Coulter, J.P. and Carlson, J.D. (1993) "Material aspects of electro-rheological system", J. Intell. Mater. Syst. Struct., 4(1), 13-34   DOI
18 Yalcintas, M. and Coulter, J.P. (1995), "Analytical Modeling of Electrorheological Material Based Adaptive Beams", J. Intell. Mater. Syst. Struct., 6(4), 488-497.   DOI   ScienceOn
19 Yalcintas, M. and Coulter, J.P. (1995), "Electrorheological Material Based Adaptive Beams Subjected to Various Boundary Conditions", J. Intell. Mater. Syst. Struct., 6(5), 700-717.   DOI   ScienceOn