DOI QR코드

DOI QR Code

Seismic protection of base isolated structures using smart passive control system

  • Jung, Hyung-Jo (Department of Civil and Environmental Engineering, KAIST) ;
  • Choi, Kang-Min (Department of Civil and Environmental Engineering, KAIST) ;
  • Park, Kyu-Sik (Department of Civil and Environmental Engineering, University of Illinoise at Urbana Champaign) ;
  • Cho, Sang-Won (The Boundary Layer Wind Tunnel Lab., The University of Western Ontario)
  • Received : 2006.10.31
  • Accepted : 2006.12.28
  • Published : 2007.07.25

Abstract

The effectiveness of the newly developed smart passive control system employing a magnetorheological (MR) damper and an electromagnetic induction (EMI) part for seismic protection of base isolated structures is numerically investigated. An EMI part in the system consists of a permanent magnet and a coil, which changes the kinetic energy of the deformation of an MR damper into the electric energy (i.e. the induced current) according to the Faraday's law of electromagnetic induction. In the smart passive control system, the damping characteristics of an MR damper are varied with the current input generated from an EMI part. Hence, it does not need any control system consisting of sensors, a controller and an external power source. This makes the system much simpler as well as more economic. To verify the efficacy of the smart passive control system, a series of numerical simulations are carried out by considering the benchmark base isolated structure control problems. The numerical simulation results show that the smart passive control system has the comparable control performance to the conventional MR damper-based semiactive control system. Therefore, the smart passive control system could be considered as one of the promising control devices for seismic protection of seismically excited base isolated structures.

Keywords

References

  1. Agrawal, A. K., Tan, P., Nagarajaiah, S. and Zhang, J. (2005), "Benchmark structural control problem for a seismically excited highway bridge, part I: problem definition", http://www-ce.engr.ccny.cuny.edu/People/Agrawal.
  2. Battaini, M., Casciati, F. and Faravelli, L. (1998), "Fuzzy control of structural vibration. an active mass system driven by a fuzzy controller", Earthq. Eng. Struct. Dyn., 27, 1267-1276. https://doi.org/10.1002/(SICI)1096-9845(1998110)27:11<1267::AID-EQE782>3.0.CO;2-D
  3. Cho, S. W., Jung, H. J. and Lee, I. W. (2005), "Smart passive system based on magnetorheological damper", Smart Mater. Struct., 14, 707-714. https://doi.org/10.1088/0964-1726/14/4/029
  4. Choi, K. M., Cho, S. W., Jung, H. J. and Lee, I. W. (2004), "Semiactive fuzzy control for seismic response reduction using MR dampers", Earthq. Eng. Struct. Dyn., 33(6), 723-736. https://doi.org/10.1002/eqe.372
  5. Dyke, S. J., Spencer Jr., B. F., Sain, M. K. and Carlson, J. D. (1996), "Modeling and control of magnetorheological dampers for seismic response reduction", Smart Mater. Struct., 5, 565-575. https://doi.org/10.1088/0964-1726/5/5/006
  6. Dyke, S. J. and Spencer Jr., B. F. (1996), "Seismic response control using multiple MR dampers", 2nd International Workshop on Structural Control. Hong Kong, 163-173.
  7. Dyke, S. J., Spencer Jr., B. F., Sain, M. K. and Carlson, J. D. (1998), "An experimental study of MR dampers for seismic protection", Smart Mater. Struct., 7, 693-703. https://doi.org/10.1088/0964-1726/7/5/012
  8. Erkus, B. and Johnson, E. A. (2006), "Smart base-isolated benchmark building Part III: a sample controller for bilinear isolation", J. Struct. Control Health Monit., 13, 605-625. https://doi.org/10.1002/stc.101
  9. Inaudi, J. A. (1997), "Modulated homogeneous friction: a semi-active damping strategy", Earthq. Eng. Struct. Dyn., 26(3), 361-376. https://doi.org/10.1002/(SICI)1096-9845(199703)26:3<361::AID-EQE648>3.0.CO;2-M
  10. Jansen, L. M. and Dyke, S. J. (2000), "Semi-active control strategies for MR dampers: a comparative study", J. Eng. Mech., ASCE, 126, 795-803. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:8(795)
  11. Jung, H. J., Choi, K. M., Spencer Jr., B. F. and Lee, I. W. (2006), "Application of some semi-active control algorithms to a smart base-isolated building employing MR dampers", J. Struct. Control Health Monit., 693-704.
  12. Lee, H. J., Yang, G., Jung, H. J., Spencer Jr., B. F. and Lee, I. W. (2006), "Semi-active neurocontrol of a baseisolated benchmark structure", J. Struct. Control Health Monit., 13, 682-692. https://doi.org/10.1002/stc.105
  13. Kamath, G. M. and Wereley, N. M. (1997), "A nonlinear viscoelastic-plastic model for electrorheological fluids", Smart Mater. Struct., 6, 351-359. https://doi.org/10.1088/0964-1726/6/3/012
  14. Marshall, S. V. and Skitek, G. G. (1999), Electromagnetic Concepts and Applications, Englewood Cliffs, NJ: Prentice-Hall.
  15. McClamroch, N. H. and Gavin, H. P. (1995), "Closed loop structural control using electrorheological dampers," Proceedings of the American Control Conference, Seattle, Washington, 4173-4177.
  16. Miner, G. F. (1996), Lines and Electromagnetic Fields for Engineers, Oxford: Oxford University Press.
  17. Nagarajaiah, S. and Narasimhan, S. (2003), "Controllers for benchmark base isolated building with linear and friction isolation system," Proceeding of the 16th Engineering Mechanics Conference, ASCE, Univ. of Washington, Seattle, CD-ROM.
  18. Nagarajaiah, S. and Narasimhan, S. (2004), "Phase I: Controllers for benchmark base isolated building: Part I," Proceeding of the 4th International Workshop on Structural Control and Health Monitoring, Columbia Univ., New York, CD-ROM.
  19. Nagarajaiah, S. and Narasimhan, S. (2006), "Phase I smart base isolated benchmark building - sample controllers for linear isolation system: Part II", J. Struct. Control and Health Monit., 13, 589-604. https://doi.org/10.1002/stc.100
  20. Narasimhan, S., Nagrajaiah, S., Johnson, E. A. and Gavin, H. P. (2003), "Smart base isolated building benchmark problem", Proceeding of the 16th Engineering Mechanics Conference, ASCE, Univ. of Washington, Seattle, CDROM.
  21. Narasimhan, S., Nagrajaiah, S., Johnson, E. A. and Gavin, H. P. (2004), "Smart base isolated benchmark building part I: Problem definition", Proceeding of the 4th International Workshop on Structural Control and Health Monitoring, Columbia Univ., New York, CD-ROM.
  22. Narasimhan, S., Nagrajaiah, S., Johnson, E. A. and Gavin, H. P. (2006), "Smart base isolated benchmark building part I: Problem definition", J. Struct. Control and Health Monit., 13, 573-588. https://doi.org/10.1002/stc.99
  23. Ramallo, J. C., Johnson, E. A. and Spencer, B. F., Jr. (2002), "Smart base isolation systems", J. Eng. Mech., ASCE, 128, 1088-1099. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:10(1088)
  24. Reitz, J. R., Milford, F. J. and Christy, R. W. (1993), Foundations of Electromagnetic Theory, Reading, MA: Addison-Wesley.
  25. Skinner, R. I., Robinson, W. H. and McVerry, G. H. (1993), An Introduction to Base Isolation, John Wiley & Sons Ltd., Chichester, England.
  26. Soong, T. T. and Constantinou. M. C. (Eds.) (1994), Passive and Active Structural Vibration Control in Civil Engineering, Springer-Verlag, Wien and New York.
  27. Spencer Jr., B. F., Dyke, S. J., Sain, M. F. and Carlson, J. D. (1997), "Phenomenological model of a magnetorheological damper", J. Eng. Mech., ASCE, 123, 230-238. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:3(230)
  28. Tan, P. and Agrawal, A. K. "Benchmark structural control problem for a seismically excited highway bridge, part II: sample control designs", http://www-ce.engr.ccny.cuny.edu/People/Agrawal, 2005.
  29. Yang, J. N., Wu, J. C., Reinhorn, A. M. and Riley, M. (1996), "Control of sliding-isolated buildings using sliding-mode control", J. Struct. Eng., 122, 179-186. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:2(179)
  30. Yoshida, O. and Dyke, S. J. (2004), "Seismic control of a nonlinear benchmark building using smart dampers", J. Eng. Mech., 130, 386-392. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:4(386)

Cited by

  1. Vibration mitigation of highway isolated bridge using MR damper-based smart passive control system employing an electromagnetic induction part vol.16, pp.6, 2009, https://doi.org/10.1002/stc.333
  2. MR fluid damper-based smart damping systems for long steel stay cable under wind load vol.4, pp.5, 2008, https://doi.org/10.12989/sss.2008.4.5.697
  3. Experimental evaluation of a self-powered smart damping system in reducing vibrations of a full-scale stay cable vol.19, pp.11, 2010, https://doi.org/10.1088/0964-1726/19/11/115027
  4. Seismic protection of base-isolated building with nonlinear isolation system using smart passive control strategy vol.15, pp.5, 2008, https://doi.org/10.1002/stc.274
  5. Experimental Investigation of MR Damper-based Semiactive Control Algorithms for Full-scale Five-story Steel Frame Building vol.21, pp.10, 2010, https://doi.org/10.1177/1045389X10374162
  6. Real-time hybrid testing using model-based delay compensation vol.4, pp.6, 2008, https://doi.org/10.12989/sss.2008.4.6.809
  7. Passively controlled MR damper in the benchmark structural control problem for seismically excited highway bridge vol.16, pp.6, 2009, https://doi.org/10.1002/stc.341
  8. Feasibility study of an MR damper-based smart passive control system employing an electromagnetic induction device vol.16, pp.6, 2007, https://doi.org/10.1088/0964-1726/16/6/036
  9. Experimental Evaluation of a ‘Self-Sensing’ Capability of an Electromagnetic Induction System Designed for MR Dampers vol.21, pp.8, 2010, https://doi.org/10.1177/1045389X10367837
  10. A feasibility study on smart base isolation systems using magneto-rheological elastomers vol.32, pp.6, 2009, https://doi.org/10.12989/sem.2009.32.6.755
  11. Functionally upgraded passive devices for seismic response reduction vol.4, pp.6, 2008, https://doi.org/10.12989/sss.2008.4.6.741
  12. A semi-active stochastic optimal control strategy for nonlinear structural systems with MR dampers vol.5, pp.1, 2009, https://doi.org/10.12989/sss.2009.5.1.069
  13. Numerical investigation of an MR damper-based smart passive control system for mitigating vibration of stay cables vol.37, pp.4, 2007, https://doi.org/10.12989/sem.2011.37.4.443