DOI QR코드

DOI QR Code

Parametric resonance of axisymmetric sandwich annular plate with ER core layer and constraining layer

  • Yeh, Jia-Yi (Department of Information Management, Chung Hwa University of Medical Technology)
  • Received : 2011.01.03
  • Accepted : 2011.09.01
  • Published : 2011.11.25

Abstract

The parametric resonance problems of axisymmetric sandwich annular plate with an electrorheological (ER) fluid core and constraining layer are investigated. The annular plate is covered an electrorheological fluid core layer and a constraining layer to improve the stability of the system. The discrete layer annular finite element and the harmonic balance method are adopted to calculate the boundary of instability regions for the sandwich annular plate system. Besides, the rheological property of an electrorheological material, such as viscosity, plasticity, and elasticity can be changed when applying an electric field. When the electric field is applied on the sandwich structure, the damping of the sandwich system is more effective. Thus, variations of the instability regions for the sandwich annular plate with different applying electric fields, thickness of ER layer, and some designed parameters are presented and discussed in this study. The ER fluid core is found to have a significant effect on the location of the boundaries of the instability regions.

Keywords

References

  1. Bolotin, V.V. (1964), The dynamic stability of elastic system, Holden-Day San Francisco.
  2. Chen Y.R. and Chen L.W. (2004), "Axisymmetric parametric resonance of polar orthotropic sandwich annular plates", Compos. Struct., 65(3-4), 269-277. https://doi.org/10.1016/j.compstruct.2003.11.007
  3. Chen, L.W. and Hwang, J.R. (1988), "Axisymmetric dynamic stability of polar orthotropic thick circular plates", J. Sound Vib., 125(3), 555-563. https://doi.org/10.1016/0022-460X(88)90261-1
  4. Chen, L.W. and Hwang, J.R. (1988), "Axisymmetric dynamic stability of transverse isotropic Mindlin circular plates", J. Sound Vib., 121(2), 307-315. https://doi.org/10.1016/S0022-460X(88)80032-4
  5. Coulter, J.P. (1993), "Engineering application of electrorheological materials", J. Intell. Mater. Syst. Struct., 4(2), 248-259 https://doi.org/10.1177/1045389X9300400215
  6. Don, D.L. (1993), An investigation of electrorheological material adoptive structure, Master's Thesis Lehigh University Bethlehem Pennsylvania.
  7. Evan-Iwanowski, R.M. (1976), Resonance oscillations in mechanical systems, Amsterdam Elsevier.
  8. Ilyasov, M.H. and Akoz, A.Y. (2000), "The vibration and dynamic stability of viscoelastic plates", Int. J. Eng. Sci., 38(6), 695-714. https://doi.org/10.1016/S0020-7225(99)00060-9
  9. Kang, Y.K., Kim, J. and Choi, S.B. (2001), "Passive and active damping characteristics of smart electrorheological composite beams", Smart Mater. Struct., 10(4), 724-729. https://doi.org/10.1088/0964-1726/10/4/316
  10. Oyadiji, S.O. (1996), "Application of electro-rheological fluids for constrained layer damping treatment of structures", J. Intell. Mater. Syst. Struct., 7, 541-549. https://doi.org/10.1177/1045389X9600700513
  11. Roy, P.K. and Ganesan, N. (1993), "A vibration and damping analysis of circular plates with constrained damping layer treatment", Comput. Struct., 49(2), 269-274. https://doi.org/10.1016/0045-7949(93)90107-O
  12. Stevens, K.K. (1966), "On the parametric excitation of a viscoelastic column", A.I.A.A. J., 4(12), 2111-2116.
  13. Stevens, K.K. (1969), "Transverse vibration of a viscoelastic column with initial curvature under periodic axial load", J. Appl. Mech - T ASME., 36(4), 814-818. https://doi.org/10.1115/1.3564776
  14. Tani, J. and Doki, H. (1982), "Dynamic stability of orthotropic annular plates under pulsating redial loads", J. Acoust. Soc. Am., 69, 1688-1694.
  15. Tani, J. and Nakamura, T. (1980), "Dynamic stability of annular plates under pulsating torsion", J. Appl. Mech - T ASME., 47(3), 595-600. https://doi.org/10.1115/1.3153739
  16. Touati, D. and Cederbaum, G. (1994), "Dynamic stability of nonlinear viscoelastic plates", Int. J. Solids Struct., 31(17), 2367-2376. https://doi.org/10.1016/0020-7683(94)90157-0
  17. Weiss, K.D., Coulter, J.P. and Carlson, J.D. (1993) "Material aspects of electro-rheological system", J. Intell. Mater. Syst. Struct., 4(1), 13-34 https://doi.org/10.1177/1045389X9300400103
  18. Yalcintas, M. and Coulter, J.P. (1995), "Analytical Modeling of Electrorheological Material Based Adaptive Beams", J. Intell. Mater. Syst. Struct., 6(4), 488-497. https://doi.org/10.1177/1045389X9500600406
  19. Yalcintas, M. and Coulter, J.P. (1995), "Electrorheological Material Based Adaptive Beams Subjected to Various Boundary Conditions", J. Intell. Mater. Syst. Struct., 6(5), 700-717. https://doi.org/10.1177/1045389X9500600511

Cited by

  1. Axisymmetric dynamic instability of polar orthotropic sandwich annular plate with ER damping treatment vol.13, pp.1, 2014, https://doi.org/10.12989/sss.2014.13.1.025
  2. Analytical method for free-damped vibration analysis of viscoelastic shear deformable annular plates made of functionally graded materials pp.1539-7742, 2019, https://doi.org/10.1080/15397734.2019.1565499
  3. Parametric instability analysis of sandwich plates with composite skins and LPRE based viscoelastic core vol.23, pp.8, 2011, https://doi.org/10.1177/1099636220942472