• Title/Summary/Keyword: smart damping

Search Result 312, Processing Time 0.018 seconds

Operational modal analysis for Canton Tower

  • Niu, Yan;Kraemer, Peter;Fritzen, Claus-Peter
    • Smart Structures and Systems
    • /
    • v.10 no.4_5
    • /
    • pp.393-410
    • /
    • 2012
  • The 610 m high Canton Tower (formerly named Guangzhou New Television Tower) is currently considered as a benchmark problem for structural health monitoring (SHM) of high-rise slender structures. In the benchmark study task I, a set of 24-hour ambient vibration measurement data has been available for the output-only system identification study. In this paper, the vector autoregressive models (ARV) method is adopted in the operational modal analysis (OMA) for this TV tower. The identified natural frequencies, damping ratios and mode shapes are presented and compared with the available results from some other research groups which used different methods, e.g., the data-driven stochastic subspace identification (SSI-DATA) method, the enhanced frequency domain decomposition (EFDD) algorithm, and an improved modal identification method based on NExT-ERA technique. Furthermore, the environmental effects on the estimated modal parameters are also discussed.

Velocity feedback for controlling vertical vibrations of pedestrian-bridge crossing. Practical guidelines

  • Wang, Xidong;Pereira, Emiliano;Diaz, Ivan M.;Garcia-Palacios, Jaime H.
    • Smart Structures and Systems
    • /
    • v.22 no.1
    • /
    • pp.95-103
    • /
    • 2018
  • Active vibration control via inertial mass actuators has been shown as an effective tool to significantly reduce human-induced vertical vibrations, allowing structures to satisfy vibration serviceability limits. However, a lot of practical obstacles have to be solved before experimental implementations. This has motivated simple control techniques, such as direct velocity feedback control (DVFC), which is implemented in practice by integrating the signal of an accelerometer with a band-pass filter working as a lossy integrator. This work provides practical guidelines for the tuning of DVFC considering the damping performance, inertial mass actuator limitations, such as stroke and force saturation, as well as the stability margins of the closed-loop system. Experimental results on a full scale steel-concrete composite structure (behaves similar to a footbridge) with adjustable span are reported to illustrate the main conclusions of this work.

Characterization and modeling of a self-sensing MR damper under harmonic loading

  • Chen, Z.H.;Ni, Y.Q.;Or, S.W.
    • Smart Structures and Systems
    • /
    • v.15 no.4
    • /
    • pp.1103-1120
    • /
    • 2015
  • A self-sensing magnetorheological (MR) damper with embedded piezoelectric force sensor has recently been devised to facilitate real-time close-looped control of structural vibration in a simple and reliable manner. The development and characterization of the self-sensing MR damper are presented based on experimental work, which demonstrates its reliable force sensing and controllable damping capabilities. With the use of experimental data acquired under harmonic loading, a nonparametric dynamic model is formulated to portray the nonlinear behaviors of the self-sensing MR damper based on NARX modeling and neural network techniques. The Bayesian regularization is adopted in the network training procedure to eschew overfitting problem and enhance generalization. Verification results indicate that the developed NARX network model accurately describes the forward dynamics of the self-sensing MR damper and has superior prediction performance and generalization capability over a Bouc-Wen parametric model.

Fault Detection of an Intelligent Cantilever Beam with Piezoelectric Materials

  • Kwon, Tae-Kyu;Lim, Suk-Jeong;Yu, Kee-Ho;Lee, Seong-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.97.2-97
    • /
    • 2002
  • A method for the non-destructive detection of damage using parameterized partial differential equations and Galerkin approximation techniques is presented. This method provides the theoretical and experimental verification of a nondestructive time domain approach to examine structural damage in smart structure. The time histories of the vibration response of structure were used to identify the presence of damage. Damage in a structure causes changes in the physical coefficients of mass density, elastic modulus and damping coefficient. This paper examines the beam-like structures with PVDF sensor and PZT actuator to perform identification of those physical parameters and to detect the...

  • PDF

Parametric resonance of axisymmetric sandwich annular plate with ER core layer and constraining layer

  • Yeh, Jia-Yi
    • Smart Structures and Systems
    • /
    • v.8 no.5
    • /
    • pp.487-499
    • /
    • 2011
  • The parametric resonance problems of axisymmetric sandwich annular plate with an electrorheological (ER) fluid core and constraining layer are investigated. The annular plate is covered an electrorheological fluid core layer and a constraining layer to improve the stability of the system. The discrete layer annular finite element and the harmonic balance method are adopted to calculate the boundary of instability regions for the sandwich annular plate system. Besides, the rheological property of an electrorheological material, such as viscosity, plasticity, and elasticity can be changed when applying an electric field. When the electric field is applied on the sandwich structure, the damping of the sandwich system is more effective. Thus, variations of the instability regions for the sandwich annular plate with different applying electric fields, thickness of ER layer, and some designed parameters are presented and discussed in this study. The ER fluid core is found to have a significant effect on the location of the boundaries of the instability regions.

Study on the space frame structures incorporated with magnetorheological dampers

  • Xu, Fei-Hong;Xu, Zhao-Dong;Zhang, Xiang-Cheng
    • Smart Structures and Systems
    • /
    • v.19 no.3
    • /
    • pp.279-288
    • /
    • 2017
  • Magnetorheological damper has received significant attention in recent years due to the reason that it can offer adaptability of active control devices without requiring the associated large power sources. In this paper, performance tests on a MR damper are carried out under different currents, excitation amplitudes and frequencies, the damping characteristics and energy dissipation capacity of the MR damper are analyzed. Elasto-plastic dynamic analysis on a space frame structure incorporated with MR dampers is conducted, and numerical analysis results show that MR dampers can significantly mitigate the structural vibration responses. Finally, the genetic algorithm with the improved binary crossover and mutation technique is adopted to optimize the arrangement of MR dampers. Numerical results show that dynamic responses of the optimal controlled structure are mitigated more effectively.

Design of Fuzzy Controller using Genetic Algorithm with a Local Improvement Mechanism (부분개선 유전자알고리즘을 이용한 퍼지제어기의 설계)

  • Kim, Hyun-Su;Paul N., Roschke;Lee, Dong-Guen
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.469-476
    • /
    • 2005
  • To date, many viable smart base isolation systems have been proposed. In this study, a novel friction pendulum system (FPS) and an MR damper are employed as the isolator and supplemental damping device, respectively. A fuzzy logic controller (FLC) is used to modulate the MR damper. A genetic algorithm (GA) is used for optimization of the FLC. The main purpose of employing a GA is to determine appropriate fuzzy control rules as well to adjust parameters of the membership functions. To this end, a GA with a local improvement mechanism is applied. Neuro-fuzzy models are used to represent dynamic behavior of the MR damper and FPS. Effectiveness of the proposed method for optimal design of the FLC is judged based on computed responses to several historical earthquakes. It has been shown that the proposed method can find appropriate fuzzy rules and the GA-optimized FLC outperforms not only a passive control strategy but also a human-designed FLC and a conventional semi-active control algorithm.

  • PDF

Development of the Active Vibration Absorber Using Piezoelectric Actuators (압전세라믹을 이용한 능동진동제어장치의 개발)

  • Kwak, Myung-Hoon;Heo, Seok;Kwak, Moon-K
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.476-481
    • /
    • 2001
  • This research is concerned with development of the active vibration absorber using piezoelectric actuators. This active isolation system consists of a-pairs of PZT actuators bonded on a S-shaped aluminum plate and the passive damping material. The active system is connected to the passive system in series. In this paper, one of the popular control techniques which have been successfully applied to the smart structure is the Positive Position Feedback(PPF) control. The digital PPF control lows downloaded to the DSP chip and a main program, which runs SISO PPF algorithm. The structure and dynamic characteristics of the proposed active vibration isolation system and described in detail. To demonstate the effectiveness of the active vibration control, the PPF controller is first employed. Experimental results show that the active vibration isolation is possible by means of the proposed system.

  • PDF

Nonlinear forced vibration of sandwich plate with considering FG core and CNTs reinforced nano-composite face sheets

  • Rostami, Rasoul;Rahaghi, Mohsen Irani;Mohammadimehr, Mehdi
    • Smart Structures and Systems
    • /
    • v.26 no.2
    • /
    • pp.185-193
    • /
    • 2020
  • Nonlinear vibration of sandwich plate with functionally graded material (FGM) core and carbon nano tubes reinforced (CNTs) nano-composite layers by considering temperature-dependent material properties are studied in this paper. Base on Classical plate theory (CPT), the governing partial differential equations of motion for sandwich plate are derived using Hamilton principle. The Galerkin procedure and multiple scales perturbation method are used to find relation between nonlinear frequency and amplitude of vibration response. The dynamic responses of the sandwich plate are also investigated in both time and frequency domains. Then, the effects of nonlinearity, excitation, power law index of FG core, volume fraction of carbon nanotube, the function of material variations of FG core, temperature changes, scale transformation parameter and damping factor on the frequency responses are investigated.

Active tendon control of suspension bridges: Study on the active cables configuration

  • Tian, Zhui;Mokrani, Bilal;Alaluf, David;Jiang, Jun;Preumont, Andre
    • Smart Structures and Systems
    • /
    • v.19 no.5
    • /
    • pp.463-472
    • /
    • 2017
  • In a previous study, the potential of damping suspension bridges with active stay cables has been evaluated on a numerical model of a suspension bridge, and demonstrated experimentally on a laboratory mockup. In this paper, we extend our study to explore two different configurations of the active stay-cables: one classical configuration, corresponding to attaching the active stay-cables between the top of the pylons and the deck (configuration I) and, another configuration, consisting of attaching the stay-cables between the base of the pylons and the catenary (configuration II). The analysis confirmed that both configurations are effective with a slight superiority of the second configuration. The study is conducted numerically and experimentally on a suspension bridge mock-up, by considering two types of active stay-cables. The experimental results confirmed the numerical predictions, and demonstrated the effectiveness of the second configuration.