Acknowledgement
The research described in this paper was financially supported by the Natural Science Foundation.
References
- Alijani, F. and Amabili, M. (2013), "Nonlinear vibrations of laminated and sandwich rectangular plates with free edges. Part 1: Theory and numerical simulations", Compos. Struct., 105, 422-436. https://doi.org/10.1016/j.compstruct.2013.05.034
- Asnafi, A. and Abedi, M.A. (2015), "A complete analogical study on the dynamic stability analysis of isotropic functionally graded plates subjected to lateral stochastic loads", Acta Mech., 226(7), 2347-2363. https://doi.org/10.1007/s00707-015-1321-7
- Chaudhari, V.K., Gupta, A. and Talha, M. (2016), "Nonlinear Vibration response of shear deformable functionally graded plate using finite element method", Proceedings of the 3rd International Conference on Innovations in Automation and Mechatronics Engineering. https://doi.org/10.1016/j.protcy.2016.03.018
- Chi, S.H. and Chung, Y.L. (2006), "Mechanical behavior of functionally graded material plates under transverse load-Part I: analysis", Int. J. Solids Struct., 43, 3657-3674. https://doi.org/10.1016/j.compstruct.2013.05.034
- Chien, R.D. and Chen, C.S. (2005), "Nonlinear vibration of laminated plates on a nonlinear elastic foundation", Compos. Struct., 70, 90-99. https://doi.org/10.1016/j.compstruct.2004.08.015
- Chien, R.D. and Chen, C.S. (2006), "Nonlinear vibration of laminated plates on an elastic foundation", Thin-Wall. Struct., 44, 852-860. https://doi.org/10.1016/j.tws.2006.08.016
- Darabi, M. and Ganesan, R. (2017), "Nonlinear dynamic instability analysis of laminated composite thin plates subjected to periodic in-plane loads", Nonlinear Dyn., 91, 187-215. https://doi.org/10.1007/s11071-017-3863-9
- Duc, N.D., Cong, P.H. and Quang, V.D. (2016), "Nonlinear dynamic and vibration analysis of piezoelectric eccentrically stiffened FGM plates in thermal environment", Int. J. Mech. Sci., 115, 711-722. https://doi.org/10.1007/s11071-017-3863-9
- Fan, Y., Xiang, Y., Shen, H.S. and Hui, D. (2018), "Nonlinear lowvelocity impact response of FG-GRC laminated plates resting on viscoelastic foundations", Compos. Part B: Eng., 144, 184-194. https://doi.org/10.1016/j.compositesb.2018.02.016
- Gholamia, R. and Ansari R. (2018), "Nonlinear harmonically excited vibration of third-order shear deformable functionally graded graphene platelet-reinforced composite rectangular plates", Eng. Struct., 156, 197-209. https://doi.org/10.1016/j.engstruct.2017.11.019
- Han, W. and Petyt, M. (1997), "Geometrically nonlinear vibration analysis of thin, rectangular plates using the hierarchical finite element method-I: The fundamental mode of isotropic plates", Comput. Struct., 63(2), 295-308. https://doi.org/10.1016/S0045-7949(96)00345-8
- Houmat, A. (2013), "Nonlinear free vibration of laminated composite rectangular plates with curvilinear fibers", Compos. Struct., 106, 211-224. https://doi.org/10.1016/j.compstruct.2013.05.058
- Kattimani, S.C. and Ray, M.C. (2014), "Smart damping of geometrically nonlinear vibrations of magneto-electro-elastic plates", Compos. Struct., 114, 51-63. https://doi.org/10.1016/j.compstruct.2014.03.050
- Liu, Y. and Chu, F. (2012), "Nonlinear vibrations of rotating thin circular cylindrical shell", Nonlinear Dyn., 67, 1467-1479. https://doi.org/10.1007/s11071-011-0082-7
- Mohammadimehr, M. and Rostami, R. (2018), "Bending and vibration analyses of a rotating sandwich cylindrical shell considering nanocomposite core and piezoelectric layers subjected to thermal and magnetic fields", Appl. Mathe. Mech., 39(2), 219-240. https://doi.org/10.1007/s10483-018-2301-6
- Mohammadimehr, M., Rostami R. and Arefi, M. (2016a), "Electroelastic analysis of a sandwich thick plate considering FG core and composite piezoelectric layers on Pasternak foundation using TSDT", Steel Compos. Struct., Int. J., 20(3), 513-544. https://doi.org/10.12989/scs.2016.20.3.513
- Mohammadimehr, M., Rousta Navia, B. and Ghorbanpour Arani, A. (2016b), "Modified strain gradient Reddy rectangular plate model for biaxial buckling and bending analysis of doublecoupled piezoelectric polymeric nanocomposite reinforced by FG-SWNT", Compos. Struct. part B: Eng., 87, 132-148. https://doi.org/10.1016/j.compositesb.2015.10.007
- Nematollahi, M.S. and Mohammadi, H. (2019), "Geometrically nonlinear vibration analysis of sandwich nanoplates based on higher-order nonlocal strain gradient theory", Int. J. Mech. Sci., 156, 31-45. https://doi.org/10.1016/j.ijmecsci.2019.03.022
- Razavi, S. and Shooshtari, A. (2014), "Nonlinear free vibration of magneto-electro-elastic rectangular plates", Compos. Struct., 119, 377-384. https://doi.org/10.1016/j.compstruct.2014.08.034
- Shahverdi, H. and Khalafi, V. (2016), "Bifurcation analysis of FG curved panels under simultaneous aerodynamic and thermal loads in hypersonic flow", Compos. Struct., 146, 84-94. https://doi.org/10.1016/j.compstruct.2016.03.011
- Shen, H.S. and Xiang, Y. (2014), "Nonlinear vibration of nanotube-reinforced composite cylindrical panels resting on elastic foundations in thermal environments", Compos. Struct., 111, 291-300. https://doi.org/10.1016/j.compstruct.2014.01.010
- Singha, M.K. and Daripa, R. (2009), "Nonlinear vibration and dynamic stability analysis of composite plates", J. Sound Vib., 328, 541-554. https://doi.org/10.1016/j.jsv.2009.08.020
- Solanki, M.K., Mishra, S.K., Shukla, K.K. and Singh, J. (2015), "Nonlinear free vibration of laminated composite and sandwich plates using multiquadric collocations", Proceedings of the 4th International Conference on Materials Processing and Characterization. https://doi.org/10.1016/j.matpr.2015.07.210
- Soni, S., Jain, N.K. and Joshi, P.V. (2017), "Analytical modeling for nonlinear vibration analysis of partially cracked thin magneto-electro-elastic plate coupled with fluid", Nonlinear Dyn., 90,137-170. https://doi.org/10.1007/s11071-017-3652-5
- Talha, M. and Singh, B.N. (2011), "Thermo-mechanical induced vibration characteristics of shear deformable functionally graded ceramic-metal plates using finite element method", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 225(1), 50-65. https://doi.org/10.1243/09544062JMES2115
- Teng, M.W. and Wang, Y.Q. (2020), "Nonlinear free vibration of rectangular plates reinforced with 3D graphene foam: Approximate analytical solution", Results in Physics, 17. https://doi.org/10.1016/j.rinp.2020.103147.
- Torabi, J. and Ansari, R. (2017), "Nonlinear free vibration analysis of thermally induced FG-CNTRC annular plates: Asymmetric versus axisymmetric study", Comput. Methods Appl. Mech. Eng., 324, 327-347. https://doi.org/10.1016/j.cma.2017.05.025
- Xue, C.X., Pan, E., Han, Q.K., Zhang, S.Y. and Chu, H.J. (2011), "Non-linear principal resonance of an orthotropic and magnetoelastic rectangular plate", Int. J. Non-Linear Mech., 46, 703-710. https://doi.org/10.1016/j.ijnonlinmec.2011.02.002
- Yang, J., Huang, X.H. and Shen, S.H. (2020), "Nonlinear vibration of temperature-dependent FG-CNTRC laminated plates with negative Poisson's ratio", Thin Wall. Struct., 148. https://doi.org/10.1016/j.tws.2019.106514
- Zeng, S. Wang, B.L. and Wang, K.F. (2019), "Nonlinear vibration of piezoelectric sandwich nanoplates with functionally graded porous core with consideration of flexoelectric effect", Compos. Struct., 207, 340-351. https://doi.org/10.1016/j.compstruct.2018.09.040
Cited by
- Buckling analysis of functionally graded plates using HSDT in conjunction with the stress function method vol.27, pp.1, 2020, https://doi.org/10.12989/cac.2021.27.1.073
- Free Vibration Analysis of Cylindrical Micro/Nano-Shell Reinforced with CNTRC Patches vol.13, pp.4, 2020, https://doi.org/10.1142/s175882512150040x