DOI QR코드

DOI QR Code

Velocity feedback for controlling vertical vibrations of pedestrian-bridge crossing. Practical guidelines

  • Wang, Xidong (E.T.S. Ingenieros de Caminos, Canales y Puertos, Universidad Politecnica de Madrid) ;
  • Pereira, Emiliano (Department of Signal Processing and Communications, Universidad de Alcala) ;
  • Diaz, Ivan M. (E.T.S. Ingenieros de Caminos, Canales y Puertos, Universidad Politecnica de Madrid) ;
  • Garcia-Palacios, Jaime H. (E.T.S. Ingenieros de Caminos, Canales y Puertos, Universidad Politecnica de Madrid)
  • Received : 2017.11.06
  • Accepted : 2018.04.03
  • Published : 2018.07.25

Abstract

Active vibration control via inertial mass actuators has been shown as an effective tool to significantly reduce human-induced vertical vibrations, allowing structures to satisfy vibration serviceability limits. However, a lot of practical obstacles have to be solved before experimental implementations. This has motivated simple control techniques, such as direct velocity feedback control (DVFC), which is implemented in practice by integrating the signal of an accelerometer with a band-pass filter working as a lossy integrator. This work provides practical guidelines for the tuning of DVFC considering the damping performance, inertial mass actuator limitations, such as stroke and force saturation, as well as the stability margins of the closed-loop system. Experimental results on a full scale steel-concrete composite structure (behaves similar to a footbridge) with adjustable span are reported to illustrate the main conclusions of this work.

Keywords

References

  1. Alujevic, N., Zhao, G., Depraetere, B., Sas, P., Pluymers, B. and Desmet, W. (2014), "H2 optimal vibration control using inertial actuators and a comparison with tuned mass dampers", J. Sound Vib., 333(18), 4073-4083. https://doi.org/10.1016/j.jsv.2014.04.038
  2. Aphale, S.S., Fleming, A.J. and Moheimani, S.O.R. (2007), "Integral resonant control of collocated smart structures", Smart Mater. Struct., 16(2), 439-446. https://doi.org/10.1088/0964-1726/16/2/023
  3. Bortoluzzi, D., Casciati, S., Elia, L. and Faravelli, L. (2014), "Design of a TMD solution to mitigate wind-induced local vibrations in an existing timber footbridge", Smart Struct. Syst., 16(3), 459-478. https://doi.org/10.12989/sss.2015.16.3.459
  4. Casado, C.M., Diaz, I.M., de Sebastian, J., Poncela, A.V. and Lorenzana, A. (2013), "Implementation of passive and active vibration control on an in-service footbridge", Struct. Control Health., 20(1), 70-78. https://doi.org/10.1002/stc.471
  5. Casciati, F., Casciati, S. and Faravelli, L. (2017), "A contribution to the modelling of human induced excitation on pedestrian bridges", Struct. Saf., 66, 51-61. https://doi.org/10.1016/j.strusafe.2017.01.004
  6. Casciati, S. (2016), "Human induced vibration vs. cable-stay footbridge deterioration", Smart Struct. Syst., 18(1), 17-29. https://doi.org/10.12989/sss.2016.18.1.017
  7. Diaz, I.M. and Reynolds, P. (2009), "Robust saturated control of human-induced floor vibrations via a proof-mass actuator", Smart Mater. Struct., 18(12), 125024-125033. https://doi.org/10.1088/0964-1726/18/12/125024
  8. Diaz, I.M. and Reynolds, P. (2010), "Acceleration feedback control of human-induced floor vibrations", Eng. Struct., 32(1), 163-173. https://doi.org/10.1016/j.engstruct.2009.09.003
  9. Diaz, I.M., Pereira, E. and Reynolds, P. (2012a), "Integral resonant control scheme for cancelling human-induced vibrations in light-weight pedestrian structures", Struct. Control Health., 19(1), 55-69. https://doi.org/10.1002/stc.423
  10. Diaz, I.M., Pereira, E., Hudson, M.J. and Reynolds, P. (2012b), "Enhancing active vibration control of pedestrian structures using inertial actuators with local feedback control", Eng. Struct., 41, 157-166. https://doi.org/10.1016/j.engstruct.2012.03.043
  11. Griggs, W.M., Anderson, B.D.O. and Lanzon, A. (2007), "A 'mixed' small gain and passivity theorem in the frequency domain", Syst. Control Lett., 56(9-10), 596-602. https://doi.org/10.1016/j.sysconle.2007.04.005
  12. Hanagan, L.M. (2005), "Walking-induced floor vibration case studies", J. Archit. Eng., 11(1), 14-18. https://doi.org/10.1061/(ASCE)1076-0431(2005)11:1(14)
  13. Hudson, E.J., Reynolds, P. and Nyawako, D.S. (2016), "Fundamental studies of AVC with actuator dynamics", Proceedings of the 34th IMAC Conference and Exposition on Structural Dynamics, Orlando, USA, January.
  14. Hudson, M.J. and Reynolds, P. (2012), "Implementation considerations for active vibration control in the design of floor structures", Eng. Struct., 44, 334-358. https://doi.org/10.1016/j.engstruct.2012.05.034
  15. Jang, D., Park, J. and Jung H. (2015), "Experimental investigation of an active mass damper system with time delay control algorithm", Smart Struct. Syst., 15(3), 863-879. https://doi.org/10.12989/sss.2015.15.3.863
  16. Lu, X., Ding, K., Shi, W. and Weng, D. (2012), "Tuned mass dampers for human-induced vibration control of the Expo Culture Centre at the World Expo 2010 in Shanghai, China", Struct. Eng. Mech., 43(5), 607-621. https://doi.org/10.12989/sem.2012.43.5.607
  17. Moutinho, C., Cunha, A. and Caetano, E. (2011), "Analysis and control of vibrations in a stress-ribbon footbridge", Struct. Control Health., 18(6), 619-634. https://doi.org/10.1002/stc.390
  18. Nagarajaiah, S. and Jung, H.J. (2014), "Smart tuned mass dampers: recent developments", Smart Struct. Syst., 13(2), 173-176. https://doi.org/10.12989/sss.2014.13.2.173
  19. Nyawako, D., Reynolds P. and Hudson, E. (2016), "Incorporating a disturbance observer with direct velocity feedback for control of human-induced vibrations", Proceedings of the SPIE 9799, Active and Passive Smart Structures and Integrated Systems, Las Vegas, USA, April.
  20. Nyawako, D., Reynolds, P. and Hudson, E. (2015), "Dynamic compensators for floor vibration control", Proceedings of the 33rd IMAC, Orlando, USA, February.
  21. Ogata, K. (2010), Modern Control Engineering, Prentice Hall.
  22. Pereira, E. and Aphale, S.S. (2013), "Stability of positive-position feedback controllers with low-frequency restrictions", J. Sound Vib., 332(12), 2900-2999. https://doi.org/10.1016/j.jsv.2013.01.008
  23. Preumont, A. (2011), Vibration Control of Active Structures, (Third Edition), Springer.
  24. Soria, J.M., Diaz, I.M. and Garcia-Palacios, J.H. (2017), "Vibration control of a time-varying modal-parameter footbridge: study of semi-active implementable strategies", Smart Struct. Syst., 20(5), 525-537. https://doi.org/10.12989/SSS.2017.20.5.525
  25. Teng, J., Xing, H.B., Xiao, Y.Q., Liu, C.Y., Li, H. and Ou J.P. (2014), "Design and implementation of AMD system for response control in tall buildings", Smart Struct. Syst., 13(2), 235-255. https://doi.org/10.12989/sss.2014.13.2.235
  26. Ubaid, U., Daley, S. and Pope. S.A. (2015), "Design of remotely located and multi-loop vibration controllers using a sequential loop closing approach", Control Eng. Pract., 38, 1-10. https://doi.org/10.1016/j.conengprac.2014.12.016
  27. Xu, H., Zhang, C., Li, H., Tan, P., Ou, J. and Zhou F. (2014), "Active mass driver control system for suppressing windinduced vibration of the Canton Tower", Smart Struct. Syst., 13(2), 281-303. https://doi.org/10.12989/sss.2014.13.2.281
  28. Zilletti, M. (2016), "Feedback control unit with an inerter proofmass electrodynamic actuator", J. Sound Vib., 369, 16-28. https://doi.org/10.1016/j.jsv.2016.01.035
  29. Zilletti, M., Gardonio, P. and Elliott, S.J. (2014), "Optimisation of a velocity feedback controller to minimise kinetic energy and maximise power dissipation", J. Sound Vib., 333(19), 4405-4414. https://doi.org/10.1016/j.jsv.2014.04.036