• 제목/요약/키워드: small RNAs

검색결과 241건 처리시간 0.027초

Candida albicans의 마이크로RNA 동정과 분석 (Identification and analysis of microRNAs in Candida albicans)

  • 조진현;이헌진
    • 생명과학회지
    • /
    • 제27권12호
    • /
    • pp.1494-1499
    • /
    • 2017
  • Candida albicans에 의한 구강 감염(캔디다증)은 구강 점막에 빈번하게 발생하며 잘 알려진 질병이다. 구강 캔디다증은 생명을 위협하는 정도의 곰팡이 감염증은 아니나, 특정상황에서 개인에게 심각한 위험을 초래할 수도 있다. 마이크로 RNA는 세포 내에서 다른 타겟 유전자를 저해하는 작은 크기의 RNA 분자이며 단백질을 코딩하지는 않고 번역과정을 억제하는 조절자로서의 역할을 하고 있다. 본 연구는 C. albicans의 마이크로RNA를 처음으로 동정하고 그러한 마이크로RNA가 지닌 기능을 조사하기 위함이다. 이를 위하여 C. albicans의 small RNA를 차세대 염기분석법을 통하여 분석하고 그러한 RNA들의 2차 구조를 생물정보학적 방법으로 조사하였다. 분석한 small RNA들은 마이크로 RNA라고 불리울 수 있는 특징들을 가지고 있었으며, 특별히 높게 발현되고 있는 두개의 마이크로 RNA 정도 크기의 RNA가 CBP1 유전자의 3' 말단 비번역구역(UTR)에서 반대방향으로 발현하는 것을 밝혀 내었다. 우리는 이러한 C. albicans의 RNA가 CBP1 유전자를 타겟으로 하여 조절하는지 알아보기 위해 RNA를 인위적으로 합성한 후 세포 내로 주입하고, 형광형미경으로 도입 사실을 확인하였다. 하지만 4시간과 8시간 후에 CBP1의 발현 변화는 관찰되지 않았다. 따라서, 이러한 결과는 C. albicans가 마이크로RNA에 의한 RNA 간섭(RNAi) 작용이 다른 진핵세포와는 다르게 작용하는 것을 알 수 있다.

Identification of piRNAs in Hela cells by massive parallel sequencing

  • Lu, Yilu;Li, Chao;Zhang, Kun;Sun, Huaqin;Tao, Dachang;Liu, Yunqiang;Zhang, Sizong;Ma, Yongxin
    • BMB Reports
    • /
    • 제43권9호
    • /
    • pp.635-641
    • /
    • 2010
  • Piwi proteins and Piwi-interacting RNAs (piRNAs) have been implicated in transposon control in germline from Drosophila to mammals. To examine the profile of small RNA expression in human cancer cells and explore difference in small RNA transcriptome, small RNA libraries prepared from wildtype, HILI overexpressed and HILI knockdowned Hela cells were sequenced using Solexa technology. piRNAs and other repeat-associated small RNAs were observed in Hela cells. By using in situ hybridization, piR-49322 was localized in the nucleolus and around the periphery of nuclear membrane in Hela cells. Following the overexpression of HILI, the retrotransposon elements LINE1 was significantly repressed, while LINE1-associated small RNAs decreased in abundance. The present study demonstrated that HILI along with piRNAs plays a role in LINE1 suppression in Hela cancer cell line.

Comparison of Total RNA Isolation Methods for Analysis of Immune-Related microRNAs in Market Milks

  • Oh, Sangnam;Park, Mi Ri;Son, Seok Jun;Kim, Younghoon
    • 한국축산식품학회지
    • /
    • 제35권4호
    • /
    • pp.459-465
    • /
    • 2015
  • Bovine milk provides essential nutrients, including immunologically important molecules, as the primary source of nutrition to newborns. Recent studies showed that RNAs from bovine milk contain immune-related microRNAs (miRNA) that regulate various immune systems. To evaluate the biological and immunological activity of miRNAs from milk products, isolation methods need to be established. Six methods for extracting total RNAs from bovine colostrums were adopted to evaluate the isolating efficiency and expression of miRNAs. Total RNA from milk was presented in formulation of small RNAs, rather than ribosomal RNAs. Column-combined phenol isolating methods showed high recovery of total RNAs, especially the commercial columns for biofluid samples, which demonstrated outstanding efficiency for recovering miRNAs. We also evaluated the quantity of five immune-related miRNAs (miR-93, miR-106a, miR-155, miR-181a, miR-451) in milk processed by temperature treatments including low temperature for long time (LTLT, 63℃ for 30 min)-, high temperature for short time (HTST, 75℃ for 15 s)-, and ultra heat treatment (UHT, 120-130℃ for 0.5-4 s). All targeted miRNAs had significantly reduced levels in processed milks compared to colostrum and raw mature milk. Interestingly, the amount of immune-related miRNAs from HTST milk was more resistant than those of LTLT and UHT milks. Our present study examined defined methods of RNA isolation and quantification of immune-specific miRNAs from small volumes of milk for use in further analysis.

MiRNA Synergistic Network Construction and Enrichment Analysis for Common Target Genes in Small-cell Lung Cancer

  • Zhang, Tie-Feng;Cheng, Ke-Wen;Shi, Wei-Yin;Zhang, Jin-Tao;Liu, Ke-Di;Xu, Shu-Guang;Chen, Ji-Quan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권12호
    • /
    • pp.6375-6378
    • /
    • 2012
  • Background: Small-cell lung cancer (also known as SCLC) is an aggressive form and untreated patients generally die within about 3 months. To obtain further insight into mechanism underlying malignancy with this cancer, an miRNA synergistic regulatory network was constructed and analyzed in the present study. Method: A miRNA microarray dataset was downloaded from the NCBI GEO database (GSE27435). A total of 546 miRNAs were identified to be expressed in SCLC cells. Then a miRNA synergistic network was constructed, and the included miRNAs mapped to the network. Topology analysis was also performed to analyze the properties of the synergistic network. Consequently, we could identified constitutive modules. Further, common target genes of each module were identified with CFinder. Finally, enrichment analysis was performed for target genes. Results: In this study, a miRNA synergistic network with 464 miRNAs and 2981 edges was constructed. According to the topology analysis, the topological properties between the networks constructed by LC related miRNAs and LC unrelated miRNAs were significantly different. Moreover, a module cilque0 could be identified in our network using CFinder. The module included three miRNAs (hsa-let-7c, hsa-let-7b and hsa-let-7d). In addition, several genes were found which were predicted to be common targets of cilque0. The enrichment analysis demonstrated that these target genes were enriched in MAPK signaling pathways. Conclusions: Although limitations exist in the current data, the results uncovered here are important for understanding the key roles of miRNAs in SCLC. However, further validation is required since our results were based on microarray data derived from a small sample size.

MicroRNA expression profiling during the suckling-to-weaning transition in pigs

  • Jang, Hyun Jun;Lee, Sang In
    • Journal of Animal Science and Technology
    • /
    • 제63권4호
    • /
    • pp.854-863
    • /
    • 2021
  • Weaning induces physiological changes in intestinal development that affect pigs' growth performance and susceptibility to disease. As a posttranscriptional regulator, microRNAs (miRNAs) regulate cellular homeostasis during intestinal development. We performed small RNA expression profiling in the small intestine of piglets before weaning (BW), 1 week after weaning (1W), and 2 weeks after weaning (2W) to identify weaning-associated differentially expressed miRNAs. We identified 38 differentially expressed miRNAs with varying expression levels among BW, 1W, and 2W. Then, we classified expression patterns of the identified miRNAs into four types. ssc-miR-196a and ssc-miR-451 represent pattern 1, which had an increased expression at 1W and a decreased expression at 2W. ssc-miR-499-5p represents pattern 2, which had an increased expression at 1W and a stable expression at 2W. ssc-miR-7135-3p and ssc-miR-144 represent pattern 3, which had a stable expression at 1W and a decreased expression at 2W. Eleven miRNAs (ssc-miR-542-3p, ssc-miR-214, ssc-miR-758, ssc-miR-4331, ssc-miR-105-1, ssc-miR-1285, ssc-miR-10a-5p, ssc-miR-4332, ssc-miR-503, ssc-miR-6782-3p, and ssc-miR-424-5p) represent pattern 4, which had a decreased expression at 1W and a stable expression at 2W. Moreover, we identified 133 candidate targets for miR-196a using a target prediction database. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that the target genes were associated with 19 biological processes, 4 cellular components, 8 molecular functions, and 7 KEGG pathways, including anterior/posterior pattern specification as well as the cancer, PI3K-Akt, MAPK, GnRH, and neurotrophin signaling pathways. These findings suggest that miRNAs regulate the development of the small intestine during the weaning process in piglets by anterior/posterior pattern specification as well as the cancer, PI3K-Akt, MAPK, GnRH, and neurotrophin signaling pathways.

Involvement of EBV-encoded BART-miRNAs and Dysregulated Cellular miRNAs in Nasopharyngeal Carcinoma Genesis

  • Xie, Yuan-Jie;Long, Zhi-Feng;He, Xiu-Sheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권10호
    • /
    • pp.5637-5644
    • /
    • 2013
  • The definite molecular mechanisms underlying the genesis of nasopharyngeal carcinomas (NPCs) remain to be completely elucidated. miRNAs are small non-coding RNAs which are implicated in cell proliferation, apoptosis, and even carcinogenesis through negatively regulating gene expression post-transcriptionally. EBV was the first human virus found to express miRNAs. EBV-encoded BART-miRNAs and dysregulated cellular miRNAs are involved in carcinogenesis of NPC by interfering in the expression of viral and host cell genes related to immune responses and perturbing signal pathways of proliferation, apoptosis, invasion, metastasis and even radio-chemo-therapy sensitivity. Additional studies on the roles of EBV-encoded miRNAs and cellular miRNAs will provide new insights concerning the complicated gene regulated network and shed light on novel strategies for the diagnosis, therapy and prognosis of NPC.

Clinical Aspect of MicroRNA in Lung Cancer

  • Jeong, Hye Cheol
    • Tuberculosis and Respiratory Diseases
    • /
    • 제77권2호
    • /
    • pp.60-64
    • /
    • 2014
  • MicroRNAs (miRNAs) are a class of small noncoding RNAs that modulate target gene activity, and are aberrantly expressed in most types of cancer as well in lung cancer. A miRNA can potentially target a diverse set of mRNAs; further, it plays a critical role in lung tumorigenesis as well as affects patient outcome. Previous studies focused mainly on abnormal miRNAs expressions in lung cancer tissues. Interestingly, circulating miRNAs were identified in human plasma and serum in 2008. Since then, considerable effort has been directed to the study of circulating miRNAs as one of the biomarkers of lung cancer. miRNAs expression of tissues and blood in lung cancer patients is being analyzed by more researchers. Recently, to overcome the high false-positivity of low-dose chest computed tomography scan, miRNAs in lung cancer screening are being investigated. This article summarizes the recent researches regarding clinical applications of miRNAs in the diagnosis and management of lung cancer.

Roles of Oncogenic Long Non-coding RNAs in Cancer Development

  • Do, Hyunhee;Kim, Wanyeon
    • Genomics & Informatics
    • /
    • 제16권4호
    • /
    • pp.18.1-18.9
    • /
    • 2018
  • Long non-coding RNAs (lncRNAs) are classified as RNAs that are longer than 200 nucleotides and cannot be translated into protein. Several studies have demonstrated that lncRNAs are directly or indirectly involved in a variety of biological processes and in the regulation of gene expression. In addition, lncRNAs have important roles in many diseases including cancer. It has been shown that abnormal expression of lncRNAs is observed in several human solid tumors. Several studies have shown that many lncRNAs can function as oncogenes in cancer development through the induction of cell cycle progression, cell proliferation and invasion, anti-apoptosis, and metastasis. Oncogenic lncRNAs have the potential to become promising biomarkers and might be potent prognostic targets in cancer therapy. However, the biological and molecular mechanisms of lncRNA involvement in tumorigenesis have not yet been fully elucidated. This review summarizes studies on the regulatory and functional roles of oncogenic lncRNAs in the development and progression of various types of cancer.

Identification and Function Prediction of Novel MicroRNAs in Laoshan Dairy Goats

  • Ji, Zhibin;Wang, Guizhi;Zhang, Chunlan;Xie, Zhijing;Liu, Zhaohua;Wang, Jianmin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제26권3호
    • /
    • pp.309-315
    • /
    • 2013
  • MicroRNAs are a class of endogenous small RNAs that play important roles in post-transcriptional gene regulation by directing degradation of mRNAs or facilitating repression of target gene translation. In this study, three small RNA cDNA libraries from the mammary gland tissues of Laoshan dairy goats (Capra hircus) were constructed and sequenced, individually. Through Solexa high-throughput sequencing and bioinformatics analysis, we obtained 50 presumptive novel miRNAs candidates, and 55,448 putative target genes were predicted. GO annotations and KEGG pathway analyses showed the majority of target genes were involved in various biological processes and metabolic pathways. Our results discovered more information about the regulation network between miRNAs and mRNAs and paved a foundation for the molecular genetics of mammary gland development in goats.

Versatile Roles of Microbes and Small RNAs in Rice and Planthopper Interactions

  • Mansour, Abdelaziz;Mannaa, Mohamed;Hewedy, Omar;Ali, Mostafa G.;Jung, Hyejung;Seo, Young-Su
    • The Plant Pathology Journal
    • /
    • 제38권5호
    • /
    • pp.432-448
    • /
    • 2022
  • Planthopper infestation in rice causes direct and indirect damage through feeding and viral transmission. Host microbes and small RNAs (sRNAs) play essential roles in regulating biological processes, such as metabolism, development, immunity, and stress responses in eukaryotic organisms, including plants and insects. Recently, advanced metagenomic approaches have facilitated investigations on microbial diversity and its function in insects and plants, highlighting the significance of microbiota in sustaining host life and regulating their interactions with the environment. Recent research has also suggested significant roles for sRNA-regulated genes during rice-planthopper interactions. The response and behavior of the rice plant to planthopper feeding are determined by changes in the host transcriptome, which might be regulated by sRNAs. In addition, the roles of microbial symbionts and sRNAs in the host response to viral infection are complex and involve defense-related changes in the host transcriptomic profile. This review reviews the structure and potential functions of microbes and sRNAs in rice and the associated planthopper species. In addition, the involvement of the microbiota and sRNAs in the rice-planthopper-virus interactions during planthopper infestation and viral infection are discussed.