Browse > Article
http://dx.doi.org/10.5713/ajas.2012.12422

Identification and Function Prediction of Novel MicroRNAs in Laoshan Dairy Goats  

Ji, Zhibin (College of Animal Science and Veterinary Medicine, Shandong Agricultural University)
Wang, Guizhi (College of Animal Science and Veterinary Medicine, Shandong Agricultural University)
Zhang, Chunlan (College of Animal Science and Veterinary Medicine, Shandong Agricultural University)
Xie, Zhijing (College of Animal Science and Veterinary Medicine, Shandong Agricultural University)
Liu, Zhaohua (College of Animal Science and Veterinary Medicine, Shandong Agricultural University)
Wang, Jianmin (College of Animal Science and Veterinary Medicine, Shandong Agricultural University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.26, no.3, 2013 , pp. 309-315 More about this Journal
Abstract
MicroRNAs are a class of endogenous small RNAs that play important roles in post-transcriptional gene regulation by directing degradation of mRNAs or facilitating repression of target gene translation. In this study, three small RNA cDNA libraries from the mammary gland tissues of Laoshan dairy goats (Capra hircus) were constructed and sequenced, individually. Through Solexa high-throughput sequencing and bioinformatics analysis, we obtained 50 presumptive novel miRNAs candidates, and 55,448 putative target genes were predicted. GO annotations and KEGG pathway analyses showed the majority of target genes were involved in various biological processes and metabolic pathways. Our results discovered more information about the regulation network between miRNAs and mRNAs and paved a foundation for the molecular genetics of mammary gland development in goats.
Keywords
MicroRNA; Mammary Gland; Goat; Solexa High-throughput Sequencing;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bartel, D. P. 2004. MicroRNAs: Genomics biogenesis, mechanism, and function. Cell 116:281-297.   DOI   ScienceOn
2 Berezikov, E., V. Guryev, J. van de Belt, E. Wienholds, R. H. Plasterk and E. Cuppen. 2005. Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120:21-24.   DOI   ScienceOn
3 Brown, J. R. and P. Sanseau. 2005. A computational view of microRNAs and their targets. Drug Discov. Today 10:595-601.   DOI   ScienceOn
4 Allen, E., Z. Xie, A. M. Gustafson and J. C. Carrington. 2005. microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121:207-221.   DOI   ScienceOn
5 Carbon, S., A. Ireland, C. J. Mungall, S. Shu, B. Marshall, S. Lewis, AmiGO Hub and Web Presence Working Group. 2009. AmiGO: online access to ontology and annotation data. Bioinformatics 25:288-289.   DOI   ScienceOn
6 Carthew, R. W. 2006. Gene regulation by microRNAs. Curr. Opin. Genet. Dev. 16:203-208.   DOI   ScienceOn
7 Chen, X., Q. Li, J. Wang, X. Guo, X. Jiang, Z. Ren, C. Weng, G. Sun, X. Wang, Y. Liu, L. Ma, J. Y. Chen, J. Wang, K. Zen, J. Zhang and C. Y. Zhang. 2009. Identification and characterization of novel amphioxus microRNAs by Solexa sequencing. Genome Biol. 10:R78.   DOI   ScienceOn
8 Fabian, M. R., N. Sonenberg and W. Filipowicz. 2010. Regulation of mRNA translation and stability by microRNAs. Annu. Rev. Biochem. 79:351-379.   DOI   ScienceOn
9 Ji, Z., G. Wang, Z. Xie, C. Zhang and J. Wang. 2012. Identification and characterization of microRNA in the dairy goat (Capra hircus) mammary gland by Solexa deep-sequencing technology. Mol. Biol. Rep. 39:9361-9371.   DOI   ScienceOn
10 Jiang, P., H. Wu, W. Wang, W. Ma, X. Sun and Z. Lu. 2007. MiPred: classification of real and pseudo microRNA precursors using random forest prediction model with combined features. Nucleic Acids Res. 35:W339-W344.   DOI
11 Kozomara, A. and S. Griffiths-Jones. 2011. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 39:D152-D157.   DOI
12 Lai, E. C. 2002. MicroRNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat. Genet. 30:363-364.   DOI   ScienceOn
13 Lee, R. C., R. L. Feinbaum and V. Ambros. 1993. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843-854.   DOI   ScienceOn
14 Lewis, B. P., I. H. Shih, M. W. Jones-Rhoades, D. P. Bartel and C. B. Burge. 2003. Prediction of mammalian microRNA targets. Cell 115:787-798.   DOI   ScienceOn
15 Li, G., Y. Li, X. Li, X. Ning, M. Li and G. Yang. 2011a. MicroRNA identity and abundance in developing swine adipose tissue as determined by Solexa sequencing. J. Cell Biochem. 112:1318-1328.   DOI   ScienceOn
16 Li, R., Y. Li, K. Kristiansen and J. Wang. 2008. SOAP: Short Oligonucleotide alignment program. Bioinformatics 24:713-714.   DOI   ScienceOn
17 Li, T., R. Wu, Y. Zhang and D. Zhu. 2011b. A systematic analysis of the skeletal muscle miRNA transcriptome of chicken varieties with divergent skeletal muscle growth identifies novel miRNAs and differentially expressed miRNAs. BMC Genomics 12:186-205.   DOI   ScienceOn
18 Li, Y., Z. Zhang, F. Liu, W. Vongsangnak, Q. Jing and B. Shen. 2012. Performance comparison and evaluation of software tools for microRNA deep-sequencing data analysis. Nucleic Acids Res. 40:4298-4305.   DOI
19 Kanehisa, M., S. Goto, Y. Sato, M. Furumichi and M. Tanabe. 2012. KEGG for integration and interpretation of large-scale molecular datasets. Nucleic Acids Res. 40:D109-D114.   DOI
20 Millar, A. A. and P. M. Waterhouse. 2005. Plant and animal microRNAs: similarities and differences. Funct. Integr. Genomics 5:129-135.   DOI
21 Schwab, R., J. F. Palatnik, M. Riester, C. Schommer, M. Schmid and D Weigel. 2005. Specific effects of microRNAs on the plant transcriptome. Dev. Cell 8:517-527.   DOI   ScienceOn
22 Yousef, M., L. Showe, M. Showe. 2009. A study of microRNAs in silico and in vivo: bioinformatics approaches to microRNA discovery and target identification. FEBS J. 276:2150-2156.   DOI   ScienceOn
23 Zhang, B., E. J. Stellwag, X. Pan. 2009. Large-scale genome analysis reveals unique features of microRNAs. Gene 443:100-109.   DOI   ScienceOn
24 Zhang, B. H., X. P. Pan, S. B. Cox, G. P. Cobb and T. A. Anderson. 2006. Evidence that miRNAs are different from other RNAs. Cell Mol. Life Sci. 63:246-254.   DOI   ScienceOn