Browse > Article
http://dx.doi.org/10.5352/JLS.2017.27.12.1494

Identification and analysis of microRNAs in Candida albicans  

Cho, Jin-Hyun (Department of Prosthodontics, Kyungpook National University, School of Dentistry)
Lee, Heon-Jin (Department of Microbiology and Immunology, Kyungpook National University, School of Dentistry)
Publication Information
Journal of Life Science / v.27, no.12, 2017 , pp. 1494-1499 More about this Journal
Abstract
Oral infection due to Candida albicans is a widely recognized and frequent cause of superficial infections of the oral mucosa (oral candidiasis). Although oral candidiasis is not a life-threatening fungemia, it can cause severe problems in individuals under certain conditions. MicroRNAs (miRNAs) are noncoding, small RNA molecules, which regulate the expression of other genes by inhibiting the translation of target mRNAs. The present study was designed to identify miRNAs in C. albicans and determine their possible roles in this organism. miRNA-sized small RNAs (msRNAs) were cloned in C. albicans by deep sequencing, and their secondary structures were analyzed. All the cloned msRNAs satisfied conditions required to qualify them as miRNAs. Bioinformatics analysis revealed that two of the most highly expressed C. albicans msRNAs, Ca-363 and Ca-2019, were located in the 3' untranslated region of the corticosteroid-binding protein 1 (CBP1) gene in a reverse orientation. miRNA mimics were transformed into C. albicans to investigate their RNA-inhibitory functions. RNA oligonucleotide-transformed C. albicans was then observed by fluorescent microscopy. Quantitative PCR analysis showed that these msRNAs did not inhibit CBP1 gene expression 4 hr and 8 hr after ectopic miRNA transformation. These results suggest that msRNAs in C. albicans possess an miRNA-triggered RNA interference gene-silencing function, which is distinct from that exhibited by other eukaryotic systems.
Keywords
Candida albicans; CBP1; deep sequencing; microRNA; msRNA; small RNA;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ambros, V., Bartel, B., Bartel D. P., Burge, C. B., Carrington, J. C., Chen, X., Dreyfuss, G., Eddy, S. R., Griffiths-Jones, S., Marchall, M., Matzke, M., Ruvkun, G. and Tuschl, T. 2003. A uniform system for microRNA annotation. RNA 9, 277-279.   DOI
2 Bernstein, D. A., Vyas, V. K., Weinberg, D. E., Drinnenberg, I. A., Bartel, D. P. and Fink, G. R. 2012. Candida albicans Dicer (CaDcr1) is required for efficient ribosomal and spliceosomal RNA maturation. Proc. Natl. Acad. Sci. USA 109, 523-528.   DOI
3 Celluzzi, A. and Masotti, A. 2016. How our other genome controls our epi-genome. Trends. Microbiol. 24, 1-11.   DOI
4 Choi, J. W., Um, J. H., Cho, J. H. and Lee, H. J. 2017. Tiny RNAs and their voyage via extracellular vesicles: Secretion of bacterial small RNA and eukaryotic microRNA. Exp. Biol. Med. 242, 1475-1481.   DOI
5 Drinnenberg, I. A., Weinberg, D. E., Xie, K. T., Mower, J. P., Wolfe, K. H., Fink, G. R. and Bartel, D. P. 2009. RNAi in budding yeast. Science 326, 544-550.   DOI
6 Gil-Bona, A., Llama-Palacios, A., Parra, C. M., Vivanco, F., Nombela, C., Monteoliva, L. and Gil, C. 2015. Proteomics unravels extracellular vesicles as carriers of classical cytoplasmic proteins in Candida albicans. J. Proteome. Res. 14, 142-153.   DOI
7 Hafner, M., Landgraf, P., Ludwig, J., Rice, A., Ojo, T., Lin, C., Holoch, D., Lim, C. and Tuschl, T. 2008. Identification of microRNAs and other small regulatory RNAs using cDNA library sequencing. Methods 4, 3-12.
8 Lee, H. J. 2013. Exceptional stories of microRNAs. Exp. Biol. Med. 238, 339-343.   DOI
9 Lee, H. J. 2014. Additional stories of microRNAs. Exp. Biol. Med. 239, 1275-1279.   DOI
10 Lee, H. J. and Hong, S. H. 2012. Analysis of microRNA-size, small RNAs in Streptococcus mutans by deep sequencing. FEMS Microbiol. Lett. 326, 131-136.   DOI
11 Nobile, C. J and Johnson, A. D. 2015. Candida albicans Biofilms and Human Disease. Annu. Rev. Microbiol. 69, 71-92.   DOI
12 Okamura, K., Phillips, M. D., Tyler, D. M., Duan, H., Chou, Y. T. and Lai, E. C. 2008. The regulatory activity of microRNA* species has substantial influence on microRNA and 3' UTR evolution. Nat. Struct. Mol. Biol. 15, 354-363.   DOI
13 O'Toole, A. S., Miller, S., Haines, N., Zink, M. C. and Serra, M. J. 2006. Comprehensive thermodynamic analysis of 3' double-nucleotide overhangs neighboring Watson-Crick terminal base pairs. Nucleic Acids Res. 34, 3338-3344.   DOI
14 Vargas, G., Rocha, J. D. B., Oliveira, D. L., Albuquerque, P. C., Frases, S., Santos, S. S., Nosanchuk, J. D., Gomes, A. M. O., Medeiros, L. C. A. S., Miranda, K., Sobreira, T. J. P., Nakayasu, E. S., Arigi, E. A., Casadevall, A., Guimaraes, A. J., Rodrigues, M. L., Freire-de-Lima, C. G., Almeida, I. C and Nimrichter, L. 2015. Compositional and immunobiological analyses of extracellular vesicles released by Candida albicans. Cell Microbiol. 17, 389-407.   DOI
15 Rodrigues, M. L., Nimrichter, L., Oliveira, D. L., Nosanchuk, J. D. and Casadevall, A. 2008. Vesicular trans-cell wall transport in fungi: a mechanism for the delivery of virulence-associated macromolecules? Lipid Insights 2, 27-40.
16 Salvatori, O., Puri, S., Tati, S. and Edgerton, M. 2016. Innate immunity and saliva in Candida albicans-mediated oral diseases. J. Dent. Res. 95, 365-371.   DOI
17 Staab, J. F., White, T. C. and Marr, K. A. 2010. Hairpin dsRNA does not trigger RNA interference in Candida al cans cells. Yeast 28, 1-8.
18 Zuker, M. 2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406-3415.   DOI