• Title/Summary/Keyword: slurry method

Search Result 480, Processing Time 0.028 seconds

Optimization of chemical mechanical polishing for bulk AlN single crystal surface (화학적 기계적 연마 공정을 통한 bulk AlN 단결정의 표면 가공)

  • Lee, Jung Hun;Park, Cheol Woo;Park, Jae Hwa;Kang, Hyo Sang;Kang, Suk Hyun;Lee, Hee Ae;Lee, Joo Hyung;In, Jun Hyeong;Kang, Seung Min;Shim, Kwang Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.1
    • /
    • pp.51-56
    • /
    • 2018
  • To evaluate surface characteristics of AlN single crystal grown by physical vapor transport (PVT) method, chemical mechanical polishing (CMP) were performed with diamond slurry and $SiO_2$ slurry after mechanical polishing (MP), then the surface morphology and analysis of polishing characteristics of the slurry types were analyzed. To estimate how pH of slurry effects polishing process, pH of $SiO_2$ slurry was controlled, the results from estimating the effect of zeta potential and MRR (material removal rate) were compared in accordance with each pH via zeta potential analyzer. Eventually, surface roughness RMS (0.2 nm) could be derived with atomic force microscope (AFM).

Holdup Characteristics of Three Functional Regions in a Slurry Bubble Column (삼상 슬러리 기포탑의 세 기능영역 체류량 특성)

  • Jang, Ji Hwa;Lim, Dae Ho;Kang, Yong;Jun, Ki Won
    • Korean Chemical Engineering Research
    • /
    • v.48 no.3
    • /
    • pp.359-364
    • /
    • 2010
  • Three kinds of functional regions such as continuous slurry(${\varepsilon}_f$), bubble(${\varepsilon}_b$) and wake(${\varepsilon}_w$) regions were identified, and the individual phase holdups of each functional region were determined in a three-phase slurry bubble column of 0.152 m ID. The holdups of bubble and wake were measured by adopting the electrical resistivity probe method. Effects of gas velocity and solid concentration in the slurry phase on the individual holdups of functional regions in the column were discussed. The holdup of continuous slurry phase decreased but that of bubble or wake increased, with an increase in the gas velocity in the column. The increase of solid content in the slurry phase could lead to the increase in the holdup of continuous slurry phase but decrease in the bubble or wake holdup. The portion of wake holdup was in the range of 15~40% of the bubble holdup, which decreased with increasing gas velocity or solid content in the slurry phase. The individual holdups of three functional regions were well correlated with operating variables within this experimental conditions.

The Assessment of Cattle Slurry Application on Productivity and Feed Values of Barley and Hairy Vetch Influenced by Sowing Methods (보리와 헤어리 베치의 단, 혼파 재배 시 우분뇨의 시용에 따른 생산성과 사료가치의 평가)

  • Jo, Ik-Hwan
    • Korean Journal of Organic Agriculture
    • /
    • v.16 no.2
    • /
    • pp.219-230
    • /
    • 2008
  • This trial was conducted to assess effects of cattle slurry application on productivity and feed values of barley and hairy vetch when they were influenced by single or mixed-sowed cultivation in paddy fields, and to obtain good quality of organic forage resources. The results summarized are as follows. For barley and hairy vetch, single-sowed cultivation was lower in annual dry matter (DM) and total digestible nutrients (TDN) yields than mixed-sowed (P<0.05). Although crude protein (CP) contents for the barley within single-sowed treatments were lowest as 6.5%, those of hairy vetch within the same sowed method were highest as 16.7%. However, mixed-sowed cultivation with barley and hairy vetch, showing 13.8% CP content, was significantly (P<0.05) higher than CP and relative feed value (RFV) of barley alone treatment. For barley alone treatment, cattle slurry application significantly increased annual DM and TDN yields in comparison with treatments of P+K fertilization as chemical fertilizers and no fertilizer as controls. Results from cattle slurry application showed 84% and 82% in contrast with chemical fertilizer for annual DM and TDN yields, respectively. For mixed-sowed cultivation with barley and hairy vetch, cattle slurry application showed 90% and 94% annual DM and TDN yields, respectively as compared with N+P+K fertilization as chemical fertilizers. Crude protein contents ($14.2{\sim}15.9%$) for cattle slurry application treatments were significantly (P<0.05) higher than those of other treatments. Moreover, cattle slurry application treatment had the highest TDN and RFV among treatments, showing $60.7{\sim}61.8%$ and $112.2{\sim}118.1$, respectively. For hairy vetch alone treatments, annual DM and TDN yields of cattle slurry alone application treatment were highest among fertilization treatments. Furthermore, CP, TDN and RFV of cattle slurry alone application treatments were significantly (P<0.05) higher than those of other treatments. The results showed that mixed-sowed cultivation rather than single-sowed for barley or hairy vetch improved their nutritive value and quality, and also within mixed-sowed cultivation, cattle slurry application increased production yield per ha and CP contents. In the application of above system to organic livestock farming, it would be expected that forages produced by cattle slurry application under mixed-sowed method might become a substitute for foreign organic grain as protein sources.

  • PDF

Effect of the New Surface Treatment Method of Zirconia on the Shear Bond Strength with Resin Cement (지르코니아의 새로운 표면처리 방법이 레진 시멘트와의 전단결합강도에 미치는 영향)

  • Cho, Won-Tak;Bae, Ji-Hyeon;Choi, Jae-Won
    • Journal of Digital Convergence
    • /
    • v.19 no.3
    • /
    • pp.245-251
    • /
    • 2021
  • This study was to investigate the effect of the new surface treatment method of zirconia on the shear bond strength with resin cement. The zirconia specimens were classified according to the surface treatment. CON: non-treatment, HF: 10 minutes exposure to 9% HF, ZS15: Apply 15% ZrO2 slurry, ZS30: Apply 30% ZrO2 slurry, ZS50: Apply 50% ZrO2 slurry. The resin cement was layered on the surface treated zirconia, and the shear bond strength between the zirconia and the resin cement was measured after thermo-cycling. The statistical methods for shear bond strength were Kruskal-Wallis test, Mann-Whitney U test, and Bonferroni correction(α=.05/10=.005). ZS15, ZS30, and ZS50 groups treated with zirconia slurry showed higher shear bond strength than CON and HF groups(p<.05/10=.005). Within the limits of this study, the surface treatment using zirconia slurry increased the shear bond strength with resin cement. The new surface treatment method complements and improves the limitations of the adhesion of zirconia, so that various clinical applications of zirconia can be expected.

Performance Evaluation of Close Waste Landfill Vertical Slurry Wall(SCW) by Tracer Method (추적자조사기법을 활용한 사용종료매립장 연직차수벽 성능평가)

  • Lee, Dong-Geon;Oh, Young-In;Kim, Kwan-Ho;Cho, Sook-Hee;Bak, Eun-Suk
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1245-1252
    • /
    • 2010
  • Many industrialized countries are confronted with a difficulty about reuse of closed waste landfill. facilities. Especially, the demand of closed waste landfill maintenance and reuse nearby urban area has been increased, because of the shortage of usable land and extend of urban area. For the safe reuse of closed waste landfill, the most important check point is the effect of waste landfill on environment abound them. However, the non-sanitary closed waste landfill generally have no leachate lining system, therefore, the in-situ lining system such as sheet-pile, and vertical slurry wall etc. was needed to prevent the leachate outgoing from the waste landfill. In this paper present the case history of performance evaluation of vertical slurry wall by tracer tests.

  • PDF

A Comparison of Efficiency of Decolorizing Rhodamine B using Lab-Scale Photocatalytic Reactors : Slurry Reactor, IWCR and PFBR

  • Na, Young-Soo;Lee, Tae-Kyung;Lee, Song-Woo;Lee, Chang-Han;Kim, Do-Han;Park, Young-Seek;Song, Seung-Koo
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.10 no.S_4
    • /
    • pp.157-164
    • /
    • 2001
  • The performance of fluidized-bed reactor with Photomedia, immobilized TiO$_2$ onto the porous ceramic ball using a sol-gel method has been studied in this work. A simple model substrate, dilute Rhodamine B (RhB), was decolorized at room temperature. For the purpose of comparison, the slurry reactor and the Inner Wall Coated Reactor (IWCR) were used. The aim of this work was to develop the photocatalytic fluidized bed reactor (PFBR) through contrasting the photodegradability of various reactors such as the TiO$_2$slurry reactor, the inner-wall coated reactor (IWCR). In this study, the RhB was decolorized in three types of reactor. Even though the reaction rate constant of PFBR was lower than that of slurry reactor, PFBR had the advantages of preventing the wash-out of photocatalyst, so it can be operated continuously.

  • PDF

Dye-sensitized Solar Cells with Mesoporous TiO2 Film Manufactured by Spin Coating Methode (스핀코팅법에 의해 제조되어진 나노다공질 TiO2 전극막을 이용한 염료감응형 태양전지)

  • 구보근;이동윤;이원재;김현주;송재성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.9
    • /
    • pp.1001-1005
    • /
    • 2004
  • Rye-sensitized solar cell (DSSC) is a new class of solar cell, which consists of nanoporous TiO$_2$ electrode, dye-sensitizer, electrolyte, and counter electrode. Such cell is operated in sunlight via the principle of photosynthetic electrochemistry. In order to obtain the good dispersion of nano size TiO$_2$ particles In slurry, the pH of solvent, the sort and quantify of solvent additive and the quantity of surfactant were adjusted. As results, the lower the pH of solvent was the lower the viscosity of the slurry became. The addition of ethylene glycol and propylene glycol to dilute HNO$_3$ brought about the lowering of viscosity and the enhancement of stability in slurry. The addition of surfactant lowered the viscosity of slurry. It was possible to obtain the homogeneous and uniformly dispersed mesoporous TiO$_2$ film using the dilute HNO$_3$ solvent of pH 2 with the addition of ethylene glycol and neutral surfactant. DSSC was assembled with TiO$_2$ electrode and Pt electrode, and its photoelectric property was measured using the monochromatic wavelength in the rangee of 350∼700 nm.

Inspection of Underground Slurry Wall for LNG Storage Tank (LNG 저장 탱크 지중연속벽 품질시험)

  • Kim, Young-H.;Jo, Churl-Hyun;Lim, Seong-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.2
    • /
    • pp.107-115
    • /
    • 2003
  • Nondestructive testing was carried out in order to evaluate the structural integrity and construction quality of the slurry wall of the underground LNG storage tank. 9 test points were selected, and the wall thickness, rebar spacing, and compressive strength of the slurry wall were evaluated by stress wave impact-resonance method, GPR, sonic velocity, and rebound testing, respectively. As results, the wall thickness, rebar sparing and estimated compressive strength satisfy the design criteria.

Synthesis of Porous Cu-Co using Freeze Drying Process of Camphene Slurry with Oxide Composite Powders (산화물 복합분말 첨가 Camphene 슬러리의 동결건조 공정에 의한 Cu-Co 복합계 다공체 제조)

  • Lee, Gyuhwi;Han, Ju-Yeon;Oh, Sung-Tag
    • Journal of Powder Materials
    • /
    • v.27 no.3
    • /
    • pp.193-197
    • /
    • 2020
  • Porous Cu-14 wt% Co with aligned pores is produced by a freeze drying and sintering process. Unidirectional freezing of camphene slurry with CuO-Co3O4 powders is conducted, and pores in the frozen specimens are generated by sublimation of the camphene crystals. The dried bodies are hydrogen-reduced at 500℃ and sintered at 800℃ for 1 h. The reduction behavior of the CuO-Co3O4 powder mixture is analyzed using a temperature-programmed reduction method in an Ar-10% H2 atmosphere. The sintered bodies show large and aligned parallel pores in the camphene growth direction. In addition, small pores are distributed around the internal walls of the large pores. The size and fraction of the pores decrease as the amount of solid powder added to the slurry increases. The change in pore characteristics according to the amount of the mixed powder is interpreted to be due to the rearrangement and accumulation behavior of the solid particles in the freezing process of the slurry.

Fabrication of SiCf/SiC Composites using an Electrophoretic Deposition

  • Lee, Jong-Hyun;Gil, Gun-Young;Yoon, Dang-Hyok
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.5
    • /
    • pp.447-451
    • /
    • 2009
  • Continuous SiC fiber-reinforced SiC composites ($SiC_f$/SiC) were fabricated by electrophoretic deposition (EPD). Nine types of slurries with different powder contents, binder resin amounts and slurry pH were deposited on Tyranno$^{TM}$-SA fabrics by EPD at 135 V for ten minutes to determine the optimal conditions. Further EPD using the optimum slurry conditions was performed on fabrics with four different pyrolitic carbon (PyC) thicknesses. The density of the hot-pressed composites decreased with increasing PyC thickness due to the difficulty of infiltrating the slurry into the narrow gaps between the fibers. On the other hand, the mechanical strength increased with increasing PyC thickness despite the decrease in density, which was explained by the enhanced crack deflection with increasing PyC thickness. The $SiC_f$/SiC composites showed the highest density and flexural strength of 94% and 342 MPa, respectively, showing EPD as a feasible method for dense $SiC_f$/SiC fabrication.