Browse > Article
http://dx.doi.org/10.4150/KPMI.2020.27.3.193

Synthesis of Porous Cu-Co using Freeze Drying Process of Camphene Slurry with Oxide Composite Powders  

Lee, Gyuhwi (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Han, Ju-Yeon (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Oh, Sung-Tag (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Publication Information
Journal of Powder Materials / v.27, no.3, 2020 , pp. 193-197 More about this Journal
Abstract
Porous Cu-14 wt% Co with aligned pores is produced by a freeze drying and sintering process. Unidirectional freezing of camphene slurry with CuO-Co3O4 powders is conducted, and pores in the frozen specimens are generated by sublimation of the camphene crystals. The dried bodies are hydrogen-reduced at 500℃ and sintered at 800℃ for 1 h. The reduction behavior of the CuO-Co3O4 powder mixture is analyzed using a temperature-programmed reduction method in an Ar-10% H2 atmosphere. The sintered bodies show large and aligned parallel pores in the camphene growth direction. In addition, small pores are distributed around the internal walls of the large pores. The size and fraction of the pores decrease as the amount of solid powder added to the slurry increases. The change in pore characteristics according to the amount of the mixed powder is interpreted to be due to the rearrangement and accumulation behavior of the solid particles in the freezing process of the slurry.
Keywords
Porous Cu-Co; Hydrogen reduction of oxide powders; Freeze drying; Pore structure;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 J. A. Rodriguez, J. Y. Kim, J. C. Hanson, M. Perez and A. I. Frenkel: Cataly. Lett., 85 (2003) 247.   DOI
2 H.-Y. Lin and Y.-W Chen: Mater. Chem. Phys., 85 (2004) 171.   DOI
3 D.-G. Kim, K. H. Min, S.-Y. Chang, S.-T. Oh, C.-H. Lee and Y. D. Kim: Mater. Sci. Eng. A, 399 (2005) 326.   DOI
4 T. Nishizawa and K. Ishida: Bull. Alloy Phase Diagrams, 5 (1984) 161.   DOI
5 K. Araki and J. W. Halloran: J. Am Ceram. Soc., 88 (2005) 1108.   DOI
6 S. Deville: Adv. Eng. Mater., 10 (2008) 155.   DOI
7 Y. S. Park, C. Jung, C. Kim, T. Koo, C. Seok, I. Kwon and Y. Kim: Korean J. Mater. Res., 29 (2019) 92 (Korean).   DOI
8 M.-J. Suk and Y.-S. Kwon: J. Korean Powder Metall. Inst., 8 (2001) 215 (Korean).
9 P. S. Liu and K. M. Liang: J. Mater. Sci., 36 (2001) 5059.   DOI
10 H. Nakajima: Prog. Mater. Sci., 52 (2007) 1091.   DOI
11 T. Ohji and M. Fukushima: Intern. Mater. Rev., 57 (2012) 115.   DOI
12 T. Fukasawa, M. Ando, T. Ohji and S. Kanzaki: J. Am. Ceram. Soc., 84 (2001) 230.   DOI
13 B.-H. Yoon, E.-J. Lee, H.-E. Kim and Y.-H. Koh: J. Am. Ceram. Soc., 90 (2007) 1753.   DOI
14 J.-H. Jeong, S.-T. Oh and C.-Y. Hyun: J. Korean Powder Metall. Inst., 26 (2019) 6 (Korean).   DOI
15 A. E. Berkowitz, J. R. Mitchell, M. J. Carey, A. P. Young, S. Zhang, F. E. Spada, F. T. Parker, A. Hutten and G. Thomas: Phys. Rev. Lett., 68 (1992) 3745.   DOI
16 J.-Y. Han, G. Lee, H. Kang and S.-T. Oh: J. Korean Powder Metall. Inst., 26 (2019) 410 (Korean).   DOI
17 S. D. Robertson, B. D. McNicol, J. H. De Baas, S. C. Kloet and J. W. Jenkins: J. Cataly., 37 (1975) 424.   DOI