• Title/Summary/Keyword: slow-release fertilizer

Search Result 89, Processing Time 0.031 seconds

Effect of Water Management on Greenhouse Gas Emissions from Rice Paddies Using a Slow-release Fertilizer (완효성 비료를 시용한 논에서의 물관리에 따른 온실가스 배출량 평가)

  • Eun-Bin Jang;Hyun-Chul Jeong;Hyo-Suk Gwon;Hyoung-Seok Lee;Hye-Ran Park;Jong-Mun Lee;Taek-Keun Oh;Sun-Il Lee
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.2
    • /
    • pp.112-120
    • /
    • 2023
  • Methane (CH4) and nitrous oxide (N2O) are significant contributors to greenhouse gas (GHG) emissions from rice fields. Mid-summer drainage is a commonly practiced water management technique that reduces CH4 emissions from rice fields. Slow-release fertilizers gradually release nutrients over an extended period and have been shown to reduce N2O emissions. However, the combined effect of slow-release fertilizer and water management on GHG emissions remains unclear. This study compared GHG emissions from a rice paddy subjected to mid-summer drainage for 10 days (control) with that of a rice paddy subjected to prolonged mid-summer drainage for 20 days combined with slow-release fertilizer (W+S). Gas sampling was conducted weekly using a closed chamber method. During the rice cultivation period, cumulative CH4 and N2O emissions were reduced by 12.3% and 16.2%, respectively, in the W+S treatment compared to the control. Moreover, the W+S treatment exhibited a 1.9% increase in grain yield compared to the control. Under experimental conditions, slow-release fertilizers, in combination with prolonged mid-summer drainage, proved to be the optimal approach for achieving high crop yield while reducing GHG emissions. This represents an effective strategy to mitigate GHG emissions from rice paddy fields.

Fabrication of Mineral Coating for Slow-releasing Action and Characteristic (완효성을 위한 광물질 피복의 제조와 용출특성연구)

  • Kim, Byoung-Gon;Lee, Gye-Seung;Park, Chong-Lyuck;Jeon, Ho-Seok;Choi, Jong-Myung;Kim, Lee-Yul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.5
    • /
    • pp.377-382
    • /
    • 2007
  • Porous mineral coating have been fabricated and applied for basic research on their slow release action to a fertilizer. Feldspar was selected as raw mineral for the coating and two different particle sizes of powder were prepared. Slow-release action was estimated by using a potassium sulfate fertilizer. Spherical pellets were prepared with a pan-type pelletizer and then screened into sizes ranging 1.4 to 2.35mm. While the fertilizer pellets were rotated in the pelletizer again, the feldspar powder and 0.5% polyvinyl alcohol solution were simultaneously sprayed on the pellets. The fertilizer pellets coated with feldspar powder were fabricated. The pellets were heated to increase their strength and screened to sort by coating thickness. Potassium releasing tests were conducted for 40 days and the performance for slow-release action was estimated as functions of the heating temperature, coating thickness and raw mineral powder size. The Burst effect caused high initial releasing rate. Releasing kinetics was proportional to concentration of potassium in pellets. The pellet that was fabricated with $27.4{\mu}m$-sized feldspar and heated at $1050^{\circ}C$ showed a releasing rate of 43% on the 40th day.

Development of Slow-release Compound Fertilizer Used Urea-resin for Upland Crop -II. Effect of Slow-release Compound Fertilizer on Chinese Cabage (요소수지(尿素樹脂)를 이용(利用)한 전작용완효성(田作用緩效性) 복비개발(複肥開發) -II. 배추에 대(對)한 완효성(緩效性) 복비효과)

  • Seong, Ki-Seog;Kim, Bok-Jin;Shin, Jae-Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.24 no.1
    • /
    • pp.50-54
    • /
    • 1991
  • This study was conducted to evaluate the effect of five newly developed slow-release compound fertilizer varying urea/formaldehyde mole ratios on chinese cabbage against the checked plot of straight fertilizer. The chinese cabbage was obtained the highest yield in the product V which was 1.0 mole ratio of urea/formaldehyde adding with 6.7% urea resin, however, it was lowest in the product VII which the lowest mole ratio of urea/formaldehyde and the highest amount of the resin added. The appropriate product with one basal application for chinese cabbage should be one with 76.1 % of T-N dissolution in water after 24hrs and 71.7 % of T-N dissolution in soil 100 days after treatment. The total nitrogen content of the harvest plant in the product plot was lower compared to the checked plot of N P K and the available soil phosphrous after harvest was higher than that of the checked.

  • PDF

Effects of Slow Release Fertilizer and Dispersant on Biodegradation of Oil Contaminated in Sand Seashore Mesocosms (지속성 영양염제와 유분산제가 해변모래에 오염된 유류의 생분해에 미치는 영향)

  • 손재학;권개경;김상진
    • Korean Journal of Microbiology
    • /
    • v.39 no.1
    • /
    • pp.8-15
    • /
    • 2003
  • To evaluate the effects of slow release fertilizer and chemical dispersant on oil biodegradation, mesocosm studies were conducted on sand seashore. The rapid removal rates (85%) of aliphatic hydrocarbons and the simultaneous decreases of n-$C_{17}$/pristane (69%) and $n-C_{18}/phytane$ (61%) ratios by the addition of slow-release fertilizer (SRF) within 37 days of experiment indicated that SRF could enhance the oil degrading activity of indigenous microorganisms in sand mesocosm. Although the growth of heterotrophic bacteria and petroleumdegrading bacteria in the mesocosm treated with $Corexit 9527^{R}$ was stimulated, the biological oil removal based on the ratios of $Corexit 9527^{R}$ and $n-C_{18}/phytane$ was inhibited. Removal rates of aliphatic hydrocarbons (56%), and n-$C_{17}$/pristane (27%) and $n-C_{18}/phytane$ (17%) ratios by the addition of chemical dispersant $Corexit 9527^{R}$ were similar or lower than those values of control (50, 60, 46%), respectively. The biodegradation activity, however, when simultaneously treated with SRF and $Corexit 9527^{R}$, was not highly inhibited and even recovered after the elimination of chemical dispersant. From these results it could be concluded that the addition of SRF enhanced the oil removal rate in oligotrophic sand seashore and chemical dispersant possibly inhibit the oil biodegradation. Hence, in order to prevent the unrestrained usage of chemical dispersant in natural environments contaminated with oil, the National Contingency Plan of Oil Spill Response should be carefully revised in consideration of the application for bioremedaition techniques.

Changes of Soil-Emission Gases and Microbial Diversity by Different Fertilizers Supplemented after Application of Livestock-Manure Compost in Greenhouse Soil (시설재배지(施設栽培地)에서 축분퇴비(畜糞堆肥) 시용시(施用時) 보충비종(補充費種)에 따른 토양배출(土壤排出)가스 및 미생물다양성(微生物多樣性)의 변화(變化))

  • Kang, Hang-Won;Ko, Jee-Yeon;Park, Hyang-Mee;Lee, Jae-Saeng;Rang, Ui-Gum;Park, Kyeong-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.1
    • /
    • pp.52-60
    • /
    • 2000
  • This study was conducted to gain basic data for alleviation of gas emission and conservation of healthy soil environment by investigating an aspect of gas emission and microbial diversity due to the supplement of different fertilizers after application with a livestock manure compost in greenhouse soils. Green pepper was cultivated in clay loamy soil from April to August. Before planting, a livestock manure compost was applied with $741mg\;ha^{-1}$ on the basis of the phosphate content contained in compost. And then, deficient nitrogen for cropping was supplemented with either quick-acting fertilizer of urea or a controlled slow release fertilizer made from urea formaldehyde(U/F). $NH_3$ and R $NH_2$ gases emitted from soil showed a low concentration in the early stage but a maximum in 27 days after planting, then decreased rapidly and not detected after 33 days. Their average concentrations were 42% and 85% lower in the treatment of slow release fertilizer than that of urea fertilizer, respectively. $CO_2$ gas emitted under urea fertilization was ranged from 1,200 to $3,200mg{\ell}^{-1}$ and that in slow release fertilizer was $900{\sim}2,650mg\;{\ell}^{-1}$. The average concentration of urea treatment was $2,260mg{\ell}^{-1}$ and 30% higher than that of slow release fertilizer. The treatment of slow release fertilizer with the lapse of cropping time populated larger in numbers of bacteria, actinomycetes, nitrate bacteria and nitrate reduction bacteria, and ratios of bacteria and actinmycetes to fungi than that of urea fertilizer. But the number of fungi was higher in the treatment of urea fertilizer and denitrifying bacteria showed a similar trend in both treatments. The microbial diversity index, which calculated with numbers of 6 species of microorganisms, was decreased with increasing of growing stage in the range of 0.1 to 0.35 and that was higher in the tratment of slow release fertilizer than urea.

  • PDF

Development of Revegetation Methods for Restoration of the Disturbed Slopes -Application on the Seed Attached Ripping Net Revegetation Methods- (급경사 비탈면의 녹화 공법 개발 -종자부착 리핑네트공법을 중심으로-)

  • Kim, Eui-Young;Kim, Nam-Choon;Kang, Jin-Hyung;Bae, Sun-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.4
    • /
    • pp.61-69
    • /
    • 2002
  • This study was conducted to develop revegetation methods for the restoration of the steep slopes by seed attached ripping net revegetation methods. In general, steep slopes with decomposed granite soils and ripping rock are easy to erode by precipitation and impossible to revegetate only using hydroseeding with core net mulching because of poor soil fertility. The Seed Attached Ripping Net Revegetation Methods(SALNRM) will be the most popular and sustainable methods to restore decomposed granite soils and ripping rock exposed slopes. The main results are summarized as follows; 1. The net size with $1.5cm{\times}1.0cm$ density was more suitable for growing plants, and increasing the ratio of the slow release fertilizer was better to make early coverage and to grow germinated plants. 2. The fertilizer bag made by the ratio of Peatmose : Vermiculite : Perlite : Quick release fertilize r : Slow release fertilizer = 10 : 2 : 5 : 3 : 4 (v : v) was the best for plant's growth. 3. According to the seed mixture experiments, even though not using foreign grasses, the SALNRM using native plants can make diverse plant composition. 4. The SALNRM will make same early ground coverage by only using native plants like using foreign grasses. The SALNRM would become the popular revegetation methods to restore decomposed granite soils and ripping rock exposed slopes in Korea.

Growth and Yield of Rice Affected by Slow Release Nitrogen Fertilizer Mixed with Soil in Seedling Box and Incorporated into Paddy Soil (육묘상자와 본답에 전층시비한 완효성 질소비료가 벼의 생육과 수량에 미치는 영향)

  • Lee, Suk-Soon;Lee, Dong-Wook
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.4
    • /
    • pp.218-224
    • /
    • 2001
  • To find out the optimum level of slow release N fertilizers (MS 10, MS S10, LCU 80, and LCU 100), total amount of nitrogen required throughout the growing season were applied in the seedling box or incorporated into paddy soil. Four levels of the slow release N fertilizers (0, 6, 9 and 12 kg N/10 a) were mixed with commercial rice nursery bed soil. N release rate and electrical conductivity(EC) of the slow release fertilizers were greater in the order of MS 10 > LCU 80 ${\fallingdotseq}$ LCU 100 > MS S10 and higher as temperature increased. No seedlings were emerged in all MS 10 plots. The seedling emergence rate of LCU 80 and LCU 100 decreased as the N level increased and seedlings were wilted severely on the 13th day after sowing at 9 and 12 kg N/10 a. In MS S10 plots the emergence rate was higher than 80% at all N levels and seedling growth was normal until 30 days after sowing. Yield of rice was similar between seedling box application and soil incorporation in paddy of MS S10. Yield of rice among the 6, 9, 12 kg N/10 a of MS S10 and conventional 12 kg N/10 a of urea split application was similar, but it was significantly higher compared with no N plot. Fertilizer N recovery of MS S10 decreased as fertilizer level increased and it was significantly higher compared with conventional urea split application.

  • PDF

Evaluation of N2O Emissions by Nutrient Source in Soybean and Pepper Fields (콩과 고추재배지에서 양분 공급원별 N2O 배출량 평가)

  • Kim, Gun-Yeob;Lee, Sun-Il;Lee, Jong-Sik;Jeong, Hyun-Cheol;Choi, Eun-Jung
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.4
    • /
    • pp.680-686
    • /
    • 2018
  • Nitrogen fertilizers, hairy vetch, and slow-release complex fertilizers were applied to the soil during the cultivation of crops. The impact of these factors on $N_2O$ emission was quantitatively assessed and the GHGs reduction effect comprehensively evaluated. Among the three factors, the significant factors affecting $N_2O$ emission were mineral nitrogen>soil moisture>temperature. Yield and fertilizer utilization efficiency were highest in the slow-release complex fertilizer treatment. There was no significant difference in $N_2O$ emissions between the slow-release complex fertilizer treatments and the NPK+hairy vetch treatments. Comprehensive results showed that slow-release complex fertilizers treatment has high yield and fertilizer utilization efficiency but low $N_2O$ emission.

Effects of Slow-release Nitrogen Fertilizers on Yield and Nitrogen Uptake of IR667 (IR667의 수량(收量) 및 질소흡수(窒素吸收)에 미치는 완효성 질소비종별(窒素肥種別) 효과)

  • Kwon, Hang Gwang;Park, Hoon;Park, Young Sun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.6 no.4
    • /
    • pp.213-219
    • /
    • 1973
  • Effects of three slow-release nitrogen fertilizers (Sulfur-coated urea, (SCU) Jin Hae Chemical Co. Korea(JHC); Tennessee Valley Authority. U.S.A(TVA); METAP, Japan) on the yield and nitrogen uptake of IR667 (Suwon 213) were investigated comparing with urea split application under the field condition with early and usual saeson cultivation. 1. SCU(JHC) was not superior than urea split application in yield and nitrogen nutrition due to early release of nitrogen. 2. SCU(TVA) outyielded urea split by 10% showed always highest nitrogen content in straw and most balanced relative cumulative curve of nitrogen uptake or dry matter yield. 3. At ear formation stage SCU(TVA) showed specially high nitrogen content which was highly correlated with number of grain per $m^2$ of field. 4. Only SCU(TVA) showed one peak curve of nitrogen uptake rate at ear formation stage while others showed two peak pattern. 5. nitrogen fertilizer recovery of slow-release fertilizers was higher than urea split in early season cultivation and SCU (TVA) (46.0) was higher but SCU(JHC) (38.9) was similar in compare with urea split(37.1) in usual season cultivation. 6. Most promising slow-release nitrogen to match plant requirement seems to be one mixed of various slow-release fertilizers having different release pattern.

  • PDF