• Title/Summary/Keyword: slotted patch

Search Result 35, Processing Time 0.025 seconds

Design of 900MHz Diagonal Slotted Type Microstrip Patch Antenna (900MHz 대각선 슬롯형 마이크로스트립 패치안테나 설계)

  • Park, Byeong-Ho;Park, Chan-Hong;Park, Sang-Joo;Choi, Yong-Seok;Seong, Hyeon-Kyeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.525-529
    • /
    • 2009
  • In this paper, microstrip patch antenna with diagonal slotted type using RFID is designed. This microstrip patch antenna is designed by considering the properties of critical parameter like the size, the truncating dimension, position of feed power and the height of airspace. the designed microstrip patch antenna has the lowest return loss in 915MHz, and in case of the voltage standing wave ratio(VSWR) is less than 1.2 under return loss -16dB, it has bandwidth of about 26MHz. Also, the microstrip patch antenna has the gain of 6dBi on the center frequency of 915MHz band and 2.8dB in the rate of reduction.

  • PDF

A Design of Microstrip U-slotted Patch Antenna (마이크로스트립 U슬롯 패치 안테나의 설계)

  • 이진선;강치운;윤서용;이봉석;김우수;이문수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.3
    • /
    • pp.509-516
    • /
    • 1999
  • In this paper, it is designed a microstrip U-slotted patch antenna with double resonances to enhance the bandwidth. In the design of an U-slotted patch antenna, there are considered the input impedance, the width of patch, the total length of the slot, the height of foam, the position of the probe and the radius of feed pin. The broadband behavior of antenna can be obtained by adjusting the length and width of the slot. The radiation from the antenna is linear polarized with the E-paine parallel to the vertical slots and the H plane parallel to horizontal slot. The radiation pattern, impedance locus, and VSWR of the antenna are calculated using "ENSEMBLE" software, and compared with the experimental results. Experimental results show that the bandwidth for VSWR $\le$ 2:1 is about 28.6%, a directivity 14.18dBi at 6.040GHz. 6.040GHz.

  • PDF

Slotted Implantable Patch Antenna for ISM Band Application and Its Usage in WiMAX with an I-Shaped Defected Ground Structure

  • Ayubi, Adil Al;Sukhija, Shikha;Sarin, Rakesh Kumar
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.6
    • /
    • pp.359-363
    • /
    • 2017
  • A slotted implantable patch antenna with microstrip feeding is proposed for industrial, scientific, and medical band applications. The result is verified by implanting the antenna in animal tissue. Further, by varying the ground width and introducing a defect into the ground structure, the antenna becomes applicable for worldwide interoperability for microwave access operations. A simulation is performed using Empire XCcel software. An Agilent vector network analyzer is used for analyzing the return loss performance. Simulated and measured results are compared. Antennas with and without defected ground structure both have key advantages including low profile, desirable return loss, good impedance matching and required bandwidth.

A Slotted Square-Patch Type Balun-BPF (슬롯을 가진 사각 패치형의 발룬-대역 통과 여파기)

  • Oh, Song-Yi;Hwang, Hee-Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.11
    • /
    • pp.1208-1213
    • /
    • 2010
  • In this paper, a microstrip balun-BPF of slotted-square-patch type is proposed. The conventional balun-BPF has some drawbacks of narrow bandwidth and high insertion loss. In order to improve these weak points, we used a square patch in designing balun-BPF on which two slots intersecting perpendicularly and one corner-edge perturbation are adopted. This structure allows one of the most effective use of the patch space so that the insertion loss can be decreased. Changing the slot lengths is use to control the operating frequency and the bandwidth of the balun-BPF. A fabricated balun-BPF shows wide bandwidth of 300 MHz(12.7 %), small insertion loss of 0.56 dB, phase difference of $184^{\circ}{\pm}15^{\circ}$ and amplitude imbalances of within 1 dB between two output ports at 2.4 GHz band.

Miniaturized Rectangular Slotted Nameplate Antenna Design for Satellite and Radio Determination Applications

  • Shanmuganantham, Thangavelu;Kaushal, Deepanshu
    • ETRI Journal
    • /
    • v.39 no.6
    • /
    • pp.813-819
    • /
    • 2017
  • A slotted rectangular nameplate antenna design with a patch bearing the name of the first author is presented. A $6.8mm{\times}26mm{\times}1.6mm$ substrate of FR-4 epoxy material having a relative permittivity of 4.4 and a dielectric loss tangent of 0.02 is used. Additionally, the feeding technique used is a coaxial mechanism. The standard antenna design parameters, including the reflection coefficient, bandwidth, radiation pattern, gain, directivity, and voltage standing wave radio (VSWR) for the proposed prototype are analyzed using a high-frequency structure simulator (HFSS) v-15, and are compared to the measured results. The designed structure may be considered for different satellite- and radio-determination applications at the respective resonant frequencies.

Design of a Trapezoidal Microstrip Patch Antenna with Fractal Structure for Vehicle GPS (차량 GPS용 프랙털 구조의 사다리꼴 마이크로스트립 패치 안테나 설계)

  • Sung, Ha-Won;Son, Tae-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.3
    • /
    • pp.215-221
    • /
    • 2009
  • In this paper, a slotted trapezoidal microstrip fractal patch antenna is designed and fabricated for the vehicle GPS antenna. We designed air substrate patch antenna to obtain gain improvement by the elimination of dielectric loss. By applying fractal structure with crossed slot to trapezoidal patch, we obtained 42.5 % as much patch size as conventional triangular patch antenna. Measured bandwidth was 200 MHz on GPS band under VSWR 2:1 And gain was 4.31 dBi at resonant frequency that is 2$\sim$5 dB higher gain than conventional ceramic patch antenna on GPS band.

Reconfigurable Circularly Polarized Microstrip Antenna on a Slotted Ground

  • Yoon, Won-Sang;Han, Sang-Min;Pyo, Seong-Min;Lee, Jae-Hoon;Shin, In-Chul;Kim, Young-Sik
    • ETRI Journal
    • /
    • v.32 no.3
    • /
    • pp.468-471
    • /
    • 2010
  • A compact square patch antenna with reconfigurable circular polarization (CP) at 2.4 GHz is proposed. Circular polarization is generated by an arc-shaped slot on the ground plane. In order to switch the CP orientation, the current flow direction of the patch is reconfigured via the PIN diodes mounted on the slot. As the slot and bias circuit are not placed on the patch side, the proposed antenna radiates a CP wave without alteration in the main beam direction. From the experimental results, the impedance and CP bandwidths of the proposed antenna have been demonstrated for up to 80 MHz and 25 MHz, respectively.

Design of Bent-Slotted High-Sensitivity Microstrip Patch Permittivity Sensor Antenna (구부러진 슬롯이 추가된 고감도 마이크로스트립 패치 유전율 센서 안테나 설계)

  • Yeo, Junho;Lee, Jong-Ig
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.5
    • /
    • pp.415-423
    • /
    • 2019
  • In this paper, a design method for a high-sensitivity microstrip patch sensor antenna (MPSA) loaded with a bent-slot was studied for the permittivity measurement. The bent-slot similar to a single-ring complementary split ring resonator was added along a radiating edge of the patch in order to enhance the sensitivity to the permittivity. The sensitivity of the proposed MPSA was compared with that of a conventional rectangular MPSA and a thin rectangular-slotted MPSA. Three MPSAs were designed and fabricated on a 0.76-mm-thick RF-35 substrate so that the input reflection coefficient would resonate at 2.5 GHz in the absence of the superstrate under test. When five different Taconic substrates with a relative permittivity ranging from 2.17 to 10.2 were used as the superstrate under test, experiment results show that the sensitivity of the proposed MPSA, which is measured by the shift in the resonant frequency of the input reflection coefficient, is 4.1 to 6.1 times higher than that of the conventional MPSA.

Design of a Rectenna Using Dual Band/Dual Polarization Microstrip Patch Antenna (이중대역/이중편파 패치 안테나를 이용한 렉테나 설계)

  • Seo, Ki-Won;Kim, Jung-Han;Roh, Hyoung-Hwan;Seong, Yeong-Rak;Oh, Ha-Ryoung;Park, Jun-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2268-2272
    • /
    • 2010
  • This letter presents that a rectenna can utilize more stable wireless power by using a new design dual band/dual polarization microstrip patch antenna and 2 stage voltage multiplier at 2.4 GHz band and 3.1 GHz band. The proposed antenna is a new microstrip patch antenna design to make impedance matching possible by using slotted capacitive coupling between the patch and $50\Omega$ feed line on a ground plane. Its advantage is that the size of the rectenna can be reduced by using $50\Omega$ feed line on the ground plane, which can be used efficiently. The dual band/dual polarization microstrip patch antenna shows circular polarization at 2.4 GHz band and linear polarization at 3.1 GHz band. Under -10 dB return loss, The dual band/dual polarization microstrip patch antenna obtains 340 MHz bandwidth as 2.23~2.57 GHz and 375 MHz bandwidth as 2.95~3.325 GHz. Also, 2 Stage Voltage multiplier is possible to operate at 2.4 GHz band and 3.1 GHz band. The designed retenna can usually obtain wireless power at both 3.1 GHz band, and 2.4 GHz band applications such as Wi-Fi, Bluetooth, Wireless LAN, etc. So more stable wireless power can be utilized at the same time.