Browse > Article
http://dx.doi.org/10.4313/TEEM.2017.18.6.359

Slotted Implantable Patch Antenna for ISM Band Application and Its Usage in WiMAX with an I-Shaped Defected Ground Structure  

Ayubi, Adil Al (Department of Electronics and Communication Engineering, DR. B. R. Ambedkar National Institute of Technology)
Sukhija, Shikha (Department of Electronics and Communication Engineering, DR. B. R. Ambedkar National Institute of Technology)
Sarin, Rakesh Kumar (Department of Electronics and Communication Engineering, DR. B. R. Ambedkar National Institute of Technology)
Publication Information
Transactions on Electrical and Electronic Materials / v.18, no.6, 2017 , pp. 359-363 More about this Journal
Abstract
A slotted implantable patch antenna with microstrip feeding is proposed for industrial, scientific, and medical band applications. The result is verified by implanting the antenna in animal tissue. Further, by varying the ground width and introducing a defect into the ground structure, the antenna becomes applicable for worldwide interoperability for microwave access operations. A simulation is performed using Empire XCcel software. An Agilent vector network analyzer is used for analyzing the return loss performance. Simulated and measured results are compared. Antennas with and without defected ground structure both have key advantages including low profile, desirable return loss, good impedance matching and required bandwidth.
Keywords
Microstrip feed; Implantable antenna; ISM band; Defected ground structure; WiMAX;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 S. A. Kumar, J. N. Sankar, D. Dileepan, and T. Shanmuganantham, Trans. Electr. Electron. Mater., 16, 250 (2015). [DOI: https://doi.org/10.4313/TEEM.2015.16.5.250]   DOI
2 F. Merli, L. Bolomey, J. F. Zürcher, G. Corradini, E. Meurville, and A. K. Skrivervik, IEEE Trans. Antennas Propag., 59, 3544 (2011). [DOI: https://doi.org/10.1109/TAP.2011.2163763]   DOI
3 C. Liu, Y. X. Guo, and S. Xiao, IEEE Trans. Antennas Propag., 62, 2407 (2014). [DOI: https://doi.org/10.1109/TAP.2014.2307341]   DOI
4 A. Kiourti and K. S. Nikita, IEEE Antenn. Propag. M., 54, 210 (2012). [DOI: https://doi.org/10.1109/MAP.2012.6293992]
5 J. Liu, W. Y. Yin, and S. He, Prog. Electromagn. Res., 107, 115 (2010). [DOI: https://doi.org/10.2528/PIER10050904]   DOI
6 F. Merli, L. Bolomey, F. Gorostidi, B. Fuchs, J. F. Zurcher, Y. Barrandon, E. Meurville, J. R. Mosig, and A. K. Skrivervik, IEEE Antenn. Wireless Propag. Lett.,11, 1650 (2012). [DOI: https://doi.org/10.1109/LAWP.2013.2238500]   DOI
7 J. Kim and Y. Rahmat-Samii, IEEE Trans. Microwave Theory Tech., 52, 1934 (2004). [DOI: https://doi.org/10.1109/TMTT.2004.832018]   DOI
8 A.A.S. Rabih, K. M. Begam, T. Ibrahim, and Z. A. Burhanudin, Journal of Medical Research and Development, 3, 107 (2014).
9 L. H. Weng, Y. C. Guo, X. W. Shi, and X. Q. Chen, Prog. Electromagn. Res. B, 7, 173 (2008). [DOI: https://doi.org/10.2528/PIERB08031401]   DOI
10 P. V. Naidu and R. Kumar, J. Microw. Optoelectron. Electromagn. Appl., 14, 1 (2015). [DOI: https://doi.org/10.1590/2179-10742015v14i1422]   DOI
11 K. Siakavara, Microstrip Antennas (INTECH, 2011). [DOI: https://doi.org/10.5772/14676]
12 G. Breed, High Frequency Electronics, 7, 50 (2008).
13 E. Hanae, N. A. Touhami, M. Aghoutane, S. E. Amrani, A. Tazon, and M. Boussouis, Prog. Electromagn. Res. C, 55, 25 (2014). [DOI: https://doi.org/10.2528/PIERC14092302]   DOI
14 W. Xia, K. Saito,M. Takahashi, and K. Ito, IEEE Trans. Antennas Propag., 57, 894 (2009). [DOI: https://doi.org/10.1109/TAP.2009.2014579]   DOI
15 J. Gemio, J. Parron, and J. Soler, Prog. Electromagn. Res., 110, 437 (2010). [DOI: https://doi.org/10.2528/PIER10102604]   DOI
16 U. M. Mc Carthy, G. Ayalew, F. Butler, K. Mc Donnell, J. Lyng, and S. Ward, Agricultural Engineering International: CIGR Journal(2009).